Suppr超能文献

在不同的条件下,内在染色质凝聚物具有类似液体的物质特性。

In diverse conditions, intrinsic chromatin condensates have liquid-like material properties.

机构信息

Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.

HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390.

出版信息

Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2218085120. doi: 10.1073/pnas.2218085120. Epub 2023 Apr 24.

Abstract

Nuclear DNA in eukaryotes is wrapped around histone proteins to form nucleosomes on a chromatin fiber. Dynamic folding of the chromatin fiber into loops and variations in the degree of chromatin compaction regulate essential processes such as transcription, recombination, and mitotic chromosome segregation. Our understanding of the physical properties that allow chromatin to be dynamically remodeled even in highly compacted states is limited. Previously, we reported that chromatin has an intrinsic capacity to phase separate and form dynamic liquid-like condensates, which can be regulated by cellular factors [B. A. Gibson , , 470-484.e421 (2019)]. Recent contradictory reports claim that a specific set of solution conditions is required for fluidity in condensates that would otherwise be solid [J. C. Hansen, K. Maeshima, M. J. Hendzel, , 50 (2021); H. Strickfaden , , 1772-1784.e1713 (2020)]. We sought to resolve these discrepancies, as our ability to translate with confidence these biophysical observations to cells requires their precise characterization. Moreover, whether chromatin assemblies are dynamic or static affects how processes such as transcription, loop extrusion, and remodeling will engage them inside cells. Here, we show in diverse conditions and without specific buffering components that chromatin fragments form phase separated fluids in vitro. We also explore how sample preparation and imaging affect the experimental observation of chromatin condensate dynamics. Last, we describe how liquid-like in vitro behaviors can translate to the locally dynamic but globally constrained chromatin movement observed in cells.

摘要

真核生物中的核 DNA 被包裹在组蛋白蛋白质周围,在染色质纤维上形成核小体。染色质纤维的动态折叠成环和染色质紧缩程度的变化调节着转录、重组和有丝分裂染色体分离等基本过程。我们对允许染色质在高度紧缩状态下进行动态重塑的物理特性的理解是有限的。此前,我们报道染色质具有内在的相分离能力,并形成动态的液态凝聚物,这可以通过细胞因子进行调节[B. A. Gibson 等人,第 470-484 页,第 421 行(2019)]。最近的相互矛盾的报告声称,在其他情况下为固态的凝聚物中,需要特定的溶液条件才能实现流动性[J. C. Hansen、K. Maeshima、M. J. Hendzel 等人,第 50 页(2021);H. Strickfaden 等人,第 1772-1784 页,第 1713 行(2020)]。我们试图解决这些差异,因为我们需要准确地描述这些生物物理观察结果,以便有信心地将其转化为细胞。此外,染色质组装是动态的还是静态的会影响转录、环挤压和重塑等过程与细胞内的它们相互作用的方式。在这里,我们在不同的条件下且没有特定缓冲成分的情况下显示染色质片段在体外形成相分离的液体。我们还探讨了样品制备和成像如何影响染色质凝聚物动力学的实验观察。最后,我们描述了体外类似液体的行为如何转化为细胞中观察到的局部动态但全局受限的染色质运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/467b/10161002/0b86ec914453/pnas.2218085120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验