Suppr超能文献

2019-2020 年北卡罗来纳州将暴力死亡死者与前一个月急诊就诊情况进行关联的可行性。

Feasibility of linking violent death decedents to prior-month emergency department visits in North Carolina, 2019-2020.

机构信息

Department of Epidemiology, The University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, North Carolina, USA

Injury Prevention Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Inj Prev. 2023 Aug;29(4):355-362. doi: 10.1136/ip-2022-044821. Epub 2023 Apr 24.

Abstract

OBJECTIVE

Linking data between violent death decedents and other sources can provide valuable insight, highlighting opportunities for prevention of violent injury. This study investigated the feasibility of linking North Carolina Violent Death Reporting System (NC-VDRS) records with North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT) emergency department (ED) visit data to identify prior-month ED visits among this population.

METHODS

NC-VDRS death records from 2019 through 2020 were linked to NC DETECT ED visit data from December 2018 through 2020 using a probabilistic linkage approach. Linkage variables included date of birth, age, sex, zip code and county of residence, date of event (death/ED visit) and mechanism of injury. Potential linkable ED visits were filtered to those occurring in the month prior to death and manually reviewed for validity. Linked records were compared with the NC-VDRS study population to assess linkage performance and generalisability.

RESULTS

Among the 4768 violent deaths identified, we linked 1340 NC-VDRS records to at least one ED visit in the month prior to death. A higher proportion of decedents dying in medical facilities (ED/outpatient, hospital inpatient, hospice or nursing/long-term care facility) linked to a prior-month visit (80%) relative to those dying in other locations (12%). When stratified by place of death, linked decedents demographically resembled the overall NC-VDRS study population.

CONCLUSIONS

Though resource intensive, an NC-VDRS-to-NC DETECT linkage was successful in identifying prior-month ED visits among violent death decedents. This linkage should be leveraged to further analyse ED utilisation prior to violent death, expanding the knowledge base surrounding prevention opportunities for violent injuries.

摘要

目的

将暴力死亡死者与其他来源的数据进行关联,可以提供有价值的见解,突出预防暴力伤害的机会。本研究调查了将北卡罗来纳州暴力死亡报告系统(NC-VDRS)记录与北卡罗来纳州疾病事件跟踪和流行病学收集工具(NC DETECT)急诊(ED)就诊数据进行关联的可行性,以确定该人群在前一个月的 ED 就诊情况。

方法

使用概率关联方法,将 2019 年至 2020 年的 NC-VDRS 死亡记录与 2018 年 12 月至 2020 年的 NC DETECT ED 就诊数据进行关联。关联变量包括出生日期、年龄、性别、邮政编码和居住县、事件日期(死亡/ED 就诊)和损伤机制。对潜在可关联的 ED 就诊进行筛选,仅包括在死亡前一个月发生的就诊,并对其有效性进行手动审查。将关联记录与 NC-VDRS 研究人群进行比较,以评估关联性能和通用性。

结果

在所确定的 4768 例暴力死亡中,我们将 1340 例 NC-VDRS 记录与死亡前一个月至少一次的 ED 就诊进行了关联。与在其他地点死亡的死者(12%)相比,在医疗设施(ED/门诊、医院住院、临终关怀或护理/长期护理机构)死亡的死者中,与前一个月就诊相关的比例更高(80%)。按死亡地点分层,关联死者在人口统计学上与整个 NC-VDRS 研究人群相似。

结论

尽管资源密集,但 NC-VDRS 到 NC DETECT 的关联成功地确定了暴力死亡死者在前一个月的 ED 就诊情况。应利用这种关联进一步分析暴力死亡前的 ED 就诊利用情况,扩大围绕暴力伤害预防机会的知识库。

相似文献

1
Feasibility of linking violent death decedents to prior-month emergency department visits in North Carolina, 2019-2020.
Inj Prev. 2023 Aug;29(4):355-362. doi: 10.1136/ip-2022-044821. Epub 2023 Apr 24.
3
Linking Emergency Medical Services and Emergency Department Data to Improve Overdose Surveillance in North Carolina.
Public Health Rep. 2021 Nov-Dec;136(1_suppl):54S-61S. doi: 10.1177/00333549211012400.
7
Improved Ascertainment of Pregnancy-Associated Suicides and Homicides in North Carolina.
Am J Prev Med. 2016 Nov;51(5 Suppl 3):S234-S240. doi: 10.1016/j.amepre.2016.04.023.
8
Homicide among Indigenous females in North Carolina: a comparison of publicly generated data and violent death reporting system.
Forensic Sci Res. 2023 Dec 30;9(1):owad057. doi: 10.1093/fsr/owad057. eCollection 2024 Mar.
10
Suicide typologies among Medicaid beneficiaries, North Carolina 2014-2017.
BMC Psychiatry. 2022 Feb 10;22(1):104. doi: 10.1186/s12888-022-03741-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验