Suppr超能文献

基于迁移学习和深度置信网络的变速箱温度场图像故障诊断方法研究。

Research on gearbox temperature field image fault diagnosis method based on transfer learning and deep belief network.

机构信息

School of Mechanical Engineering, Southeast University, Nanjing, 211189, China.

出版信息

Sci Rep. 2023 Apr 24;13(1):6664. doi: 10.1038/s41598-023-33858-w.

Abstract

This paper applies thermal imaging technology to gearbox fault diagnosis. The temperature field calculation model is established to obtain the temperature field images of various faults. A deep learning network model combining transfer learning of convolutional neural network with supervised training and unsupervised training of deep belief network is proposed. The model requires one-fifth of the training time of the convolutional neural network model. The data set used for training the deep learning network model is expanded by using the temperature field simulation image of the gearbox. The results show that the network model has over 97% accuracy for the diagnosis of simulation faults. The finite element model of gearbox can be modified with experimental data to obtain more accurate thermal images, and this method can be better used in practice.

摘要

本文将热成像技术应用于齿轮箱故障诊断。建立温度场计算模型,得到各种故障的温度场图像。提出了一种结合卷积神经网络迁移学习和深度置信网络有监督训练与无监督训练的深度学习网络模型。该模型的训练时间仅为卷积神经网络模型的五分之一。通过使用齿轮箱温度场仿真图像扩展了深度学习网络模型的训练数据集。结果表明,该网络模型对模拟故障的诊断准确率超过 97%。可以使用实验数据修正齿轮箱的有限元模型,以获得更准确的热图像,并且这种方法可以在实际中更好地应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b01f/10126122/b8e1ba49feff/41598_2023_33858_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验