College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China.
College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China.
Appl Environ Microbiol. 2023 May 31;89(5):e0043323. doi: 10.1128/aem.00433-23. Epub 2023 Apr 26.
Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.
细菌利用多种转录调控因子来协调细胞对不断变化的环境的适应。多环芳烃(PAHs)的细菌生物降解已经得到了广泛的描述,但与 PAH 相关的转录调控因子仍然难以捉摸。在本报告中,我们鉴定了一种 FadR 型转录调控因子,它控制 Croceicoccus naphthovorans 菌株 PQ-2 中菲的生物降解。 在 C. naphthovorans PQ-2 中, 的表达受菲诱导,其缺失显著损害了菲的生物降解和酰基高丝氨酸内酯(AHLs)的合成。 在 缺失菌株中,通过提供 AHLs 或脂肪酸均可恢复菲的生物降解。值得注意的是,FadR 同时激活脂肪酸生物合成途径并抑制脂肪酸降解途径。由于细胞内 AHLs 是利用脂肪酸作为底物合成的,因此增加脂肪酸的供应可以增强 AHL 的合成。总之,这些发现表明,C. naphthovorans PQ-2 中的 FadR 通过控制 AHL 的形成来正向调节 PAH 生物降解,这是通过脂肪酸代谢介导的。 碳分解代谢物的主转录调控对于面临碳源变化的细菌的生存至关重要。多环芳烃(PAHs)可以被一些细菌用作碳源。FadR 是一种参与脂肪酸代谢的知名转录调控因子;然而,FadR 调节与细菌中 PAH 利用之间的联系仍然未知。本研究表明,Croceicoccus naphthovorans PQ-2 中的一种 FadR 型调节剂通过控制酰基高丝氨酸内酯群体感应信号的生物合成来刺激 PAH 生物降解,该信号属于脂肪酸衍生化合物。这些结果为理解细菌对含 PAH 环境的适应提供了独特的视角。