Suppr超能文献

基于临床和遗传数据的个体化卵巢刺激后次级卵母细胞数预测的机器学习模型。

Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data.

机构信息

INVICTA Research and Development Center, Sopot, Poland.

Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland.

出版信息

PLoS Comput Biol. 2023 Apr 27;19(4):e1011020. doi: 10.1371/journal.pcbi.1011020. eCollection 2023 Apr.

Abstract

Controlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient's genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched to groups of various MII oocyte counts using ranking, correspondence analysis, and self-organizing map methods. The gradient boosting machine technique was used to train models on a clinical dataset of 8,574 or a clinical-genetic dataset of 516 ovarian stimulations. The clinical-genetic model predicted the number of MII oocytes better than that based on clinical data. Anti-Müllerian hormone level and antral follicle count were the two most important predictors while a genetic feature consisting of sequence variants in the GDF9, LHCGR, FSHB, ESR1, and ESR2 genes was the third. The combined contribution of genetic features important for the prediction was over one-third of that revealed for anti-Müllerian hormone. Predictions of our clinical-genetic model accurately matched individuals' actual outcomes preventing over- or underestimation. The genetic data upgrades the personalized prediction of ovarian stimulation outcomes, thus improving the in vitro fertilization procedure.

摘要

控制性卵巢刺激是根据临床参数为患者量身定制的,但估计获得的中期 II (MII) 卵母细胞数量是一个挑战。在这里,我们开发了一种模型,该模型同时利用患者的遗传和临床特征来预测刺激结果。使用下一代测序鉴定的与生殖相关的基因中的序列变体,使用排序、对应分析和自组织映射方法与各种 MII 卵母细胞计数的组匹配。梯度提升机技术用于在 8574 个临床数据集或 516 个卵巢刺激的临床遗传数据集中训练模型。临床遗传模型比基于临床数据的模型更能预测 MII 卵母细胞的数量。抗苗勒管激素水平和窦卵泡计数是两个最重要的预测因子,而由 GDF9、LHCGR、FSHB、ESR1 和 ESR2 基因中的序列变体组成的遗传特征是第三个。对预测至关重要的遗传特征的综合贡献超过了抗苗勒管激素的三分之一。我们的临床遗传模型的预测准确匹配了个体的实际结果,防止了过高或过低的估计。遗传数据提升了卵巢刺激结果的个性化预测,从而改善了体外受精程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62c7/10138216/55ec42e4a3e9/pcbi.1011020.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验