Suppr超能文献

最佳传输变迹以最大化 lag-one 相干性及其在像差延迟估计中的应用。

Optimal transmit apodization for the maximization of lag-one coherence with applications to aberration delay estimation.

机构信息

University of Rochester Medical Center, Rochester, NY, 14642 USA.

University of Rochester Medical Center, Rochester, NY, 14642 USA.

出版信息

Ultrasonics. 2023 Jul;132:107010. doi: 10.1016/j.ultras.2023.107010. Epub 2023 Apr 23.

Abstract

Phase aberration is one of the major sources of image degradation in medical ultrasound imaging. One of the earliest and simplest techniques to correct for phase aberration involves nearest-neighbor cross correlation to estimate delays between neighboring receive channels and the compensation of aberration delays in a delay-and-sum beamformer. The main challenge is that neighboring receive channels may not have sufficient signal correlation to accurately estimate the aberration delays. Although algorithms such as the translating transmit aperture or the common midpoint gather are designed to perfectly maximize signal correlations between received signals, these algorithms require the use of different transmit apertures for each received signal. Instead, this work proposes the use of a single globally-applicable transmit apodization function that optimizes the lag-one coherence based on the van Cittert-Zernike theorem. For the application to phase aberration correction, it is shown across 20 different zero-mean Gaussian-random aberrators that the proposed optimal apodization function reduces the estimation error in the aberration delay profile from 22.85% to 15.72%.

摘要

相位误差是医学超声成象中图象劣化的主要原因之一。最早和最简单的相位误差校正技术之一是使用最近邻交叉相关来估计相邻接收通道之间的延迟,并在延迟求和波束形成器中补偿相位误差延迟。主要的挑战是相邻的接收通道之间可能没有足够的信号相关性来准确估计相位误差延迟。虽然平移发射孔径或公共中点采集等算法被设计用来最大限度地提高接收信号之间的信号相关性,但这些算法需要为每个接收信号使用不同的发射孔径。相反,这项工作提出了使用单个全局适用的发射变迹函数,该函数基于范齐特-泽尼克定理优化基于滞后一个的相干性。在应用于相位误差校正时,在 20 个不同的零均值高斯随机误差器中显示,所提出的最优变迹函数将误差延迟轮廓中的误差延迟估计从 22.85%降低到 15.72%。

相似文献

1
Optimal transmit apodization for the maximization of lag-one coherence with applications to aberration delay estimation.
Ultrasonics. 2023 Jul;132:107010. doi: 10.1016/j.ultras.2023.107010. Epub 2023 Apr 23.
2
Speckle coherence and implications for adaptive imaging.
J Acoust Soc Am. 1997 Apr;101(4):1847-58. doi: 10.1121/1.418235.
4
Angular coherence in ultrasound imaging: Theory and applications.
J Acoust Soc Am. 2017 Mar;141(3):1582. doi: 10.1121/1.4976960.
5
Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Aug;50(8):1010-22. doi: 10.1109/tuffc.2003.1226545.
6
Synergistic enhancements of ultrasound image contrast with a combination of phase aberration correction and dual apodization with cross-correlation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Sep;59(9):2089-101. doi: 10.1109/TUFFC.2012.2430.
7
Equivalence of time and aperture domain additive noise in ultrasound coherence.
J Acoust Soc Am. 2015 Jan;137(1):132-8. doi: 10.1121/1.4904530.
8
Acoustic reciprocity of spatial coherence in ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 May;62(5):852-61. doi: 10.1109/TUFFC.2014.006928.
9
Apodized adaptive beamformer.
J Med Ultrason (2001). 2017 Apr;44(2):155-165. doi: 10.1007/s10396-016-0764-3. Epub 2017 Jan 13.
10
Spatial coherence analysis applied to aberration correction using a two-dimensional array system.
J Acoust Soc Am. 2002 Dec;112(6):2558-66. doi: 10.1121/1.1511756.

本文引用的文献

1
The SVD beamformer with diverging waves: a proof-of-concept for fast aberration correction.
Phys Med Biol. 2021 Sep 17;66(18). doi: 10.1088/1361-6560/ac2129.
2
Reverberation Noise Suppression in Ultrasound Channel Signals Using a 3D Fully Convolutional Neural Network.
IEEE Trans Med Imaging. 2021 Apr;40(4):1184-1195. doi: 10.1109/TMI.2021.3049307. Epub 2021 Apr 1.
3
Improved forward model for quantitative pulse-echo speed-of-sound imaging.
Ultrasonics. 2020 Dec;108:106168. doi: 10.1016/j.ultras.2020.106168. Epub 2020 May 23.
4
Incoherent Clutter Suppression Using Lag-One Coherence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Aug;67(8):1544-1557. doi: 10.1109/TUFFC.2020.2977200. Epub 2020 Feb 28.
5
Extending Retrospective Encoding for Robust Recovery of the Multistatic Data Set.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 May;67(5):943-956. doi: 10.1109/TUFFC.2019.2961875. Epub 2019 Dec 23.
6
A Locally Adaptive Phase Aberration Correction (LAPAC) Method for Synthetic Aperture Sequences.
Ultrason Imaging. 2019 Jan;41(1):3-16. doi: 10.1177/0161734618796556. Epub 2018 Sep 15.
7
Spatial Prediction Filtering for Medical Ultrasound in Aberration and Random Noise.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Oct;65(10):1845-1856. doi: 10.1109/TUFFC.2018.2860962. Epub 2018 Aug 1.
8
The Impact of Model-Based Clutter Suppression on Cluttered, Aberrated Wavefronts.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1450-1464. doi: 10.1109/TUFFC.2017.2729944. Epub 2017 Jul 20.
9
Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Oct;62(10):1745-56. doi: 10.1109/TUFFC.2015.007005.
10
S-sequence spatially-encoded synthetic aperture ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 May;61(5):886-90. doi: 10.1109/TUFFC.2014.6805701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验