Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
Nat Commun. 2023 Apr 27;14(1):2416. doi: 10.1038/s41467-023-38098-0.
Cell-free genetically encoded biosensors have been developed to detect small molecules and nucleic acids, but they have yet to be reliably engineered to detect proteins. Here we develop an automated platform to convert protein-binding RNA aptamers into riboswitch sensors that operate within low-cost cell-free assays. We demonstrate the platform by engineering 35 protein-sensing riboswitches for human monomeric C-reactive protein, human interleukin-32γ, and phage MS2 coat protein. The riboswitch sensors regulate output expression levels by up to 16-fold with input protein concentrations within the human serum range. We identify two distinct mechanisms governing riboswitch-mediated regulation of translation rates and leverage computational analysis to refine the protein-binding aptamer regions, improving design accuracy. Overall, we expand the cell-free sensor toolbox and demonstrate how computational design is used to develop protein-sensing riboswitches with future applications as low-cost medical diagnostics.
无细胞遗传编码生物传感器已被开发用于检测小分子和核酸,但尚未被可靠地设计用于检测蛋白质。在这里,我们开发了一种自动化平台,可将结合蛋白的 RNA 适体转化为核糖开关传感器,使其在低成本的无细胞测定中发挥作用。我们通过为人类单体 C 反应蛋白、人白细胞介素 32γ 和噬菌体 MS2 衣壳蛋白工程设计 35 个蛋白质感应核糖开关来展示该平台。核糖开关传感器通过在人血清范围内的输入蛋白浓度调节高达 16 倍的输出表达水平。我们确定了两种不同的机制来控制核糖开关介导的翻译速率调节,并利用计算分析来优化蛋白结合适体区域,提高设计精度。总的来说,我们扩展了无细胞传感器工具包,并展示了如何利用计算设计来开发具有低成本医疗诊断未来应用的蛋白质感应核糖开关。