Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92 CX88 Tralee, Co. Kerry, Ireland.
Brandon Bioscience, V92 N6C8 Tralee, Co. Kerry, Ireland.
Int J Mol Sci. 2023 Apr 10;24(8):6988. doi: 10.3390/ijms24086988.
Salinity stress is a major problem affecting plant growth and crop productivity. While plant biostimulants have been reported to be an effective solution to tackle salinity stress in different crops, the key genes and metabolic pathways involved in these tolerance processes remain unclear. This study focused on integrating phenotypic, physiological, biochemical and transcriptome data obtained from different tissues of L. plants (cv. Micro-Tom) subjected to a saline irrigation water program for 61 days (EC: 5.8 dS/m) and treated with a combination of protein hydrolysate and -derived biostimulant, namely PSI-475. The biostimulant application was associated with the maintenance of higher K/Na ratios in both young leaf and root tissue and the overexpression of transporter genes related to ion homeostasis (e.g., , ). A more efficient osmotic adjustment was characterized by a significant increase in relative water content (RWC), which most likely was associated with osmolyte accumulation and upregulation of genes related to aquaporins (e.g., , ). A higher content of photosynthetic pigments (+19.8% to +27.5%), increased expression of genes involved in photosynthetic efficiency and chlorophyll biosynthesis (e.g., , ) and enhanced primary carbon and nitrogen metabolic mechanisms were observed, leading to a higher fruit yield and fruit number (47.5% and 32.5%, respectively). Overall, it can be concluded that the precision engineered PSI-475 biostimulant can provide long-term protective effects on salinity stressed tomato plants through a well-defined mode of action in different plant tissues.
盐胁迫是影响植物生长和作物产量的主要问题。虽然已经报道植物生物刺激素是解决不同作物盐胁迫的有效方法,但涉及这些耐受过程的关键基因和代谢途径仍不清楚。本研究重点整合了不同组织的表型、生理、生化和转录组数据,这些组织来自于 61 天(EC:5.8 dS/m)盐水灌溉水方案处理和组合蛋白水解物和 - 衍生生物刺激素(即 PSI-475)处理的 L. 植物(Micro-Tom 品系)。生物刺激素的应用与在幼叶和根组织中保持更高的 K/Na 比值以及与离子稳态相关的转运蛋白基因的过表达有关(例如, , )。通过相对水含量(RWC)的显著增加,特征化了更有效的渗透调节,这很可能与渗透调节剂的积累和与水通道蛋白相关的基因的上调有关(例如, , )。观察到更高的光合色素含量(+19.8%至+27.5%)、参与光合作用效率和叶绿素生物合成的基因表达增加(例如, , )以及增强的初级碳和氮代谢机制,导致更高的果实产量和果实数量(分别为 47.5%和 32.5%)。总的来说,可以得出结论,经过精密设计的 PSI-475 生物刺激素可以通过在不同植物组织中明确的作用模式为盐胁迫下的番茄植物提供长期的保护作用。