Suppr超能文献

采用微腔电极的新型方法对 LiNiCoMnO 正极-固体电解质界面行为的表征。

LiNiCoMnO Cathode-Solid Electrolyte Interfacial Behavior Characterization Using Novel Method Adopting Microcavity Electrode.

机构信息

Graduate School of Energy Science and Technology, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.

Department of Chemistry, University of Ulsan, Doowang-dong, Nam-gu, Ulsan 44776, Republic of Korea.

出版信息

Molecules. 2023 Apr 17;28(8):3537. doi: 10.3390/molecules28083537.

Abstract

Due to the limitations of organic liquid electrolytes, current development is towards high performance all-solid-state lithium batteries (ASSLBs). For high performance ASSLBs, the most crucial is the high ion-conducting solid electrolyte (SE), with a focus on interface analysis between SE and active materials. In the current study, we successfully synthesized the high ion-conductive argyrodite-type (LiPSCl) solid electrolyte, which has 4.8 mS cm conductivity at room temperature. Additionally, the present study suggests the quantitative analysis of interfaces in ASSLBs. The measured initial discharge capacity of a single particle confined in a microcavity electrode was 1.05 nAh for LiNiCoMnO (NCM622)-LiPSCl solid electrolyte materials. The initial cycle result shows the irreversible nature of active material due to the formation of the solid electrolyte interphase (SEI) layer on the surface of the active particle; further second and third cycles demonstrate high reversibility and good stability. Furthermore, the electrochemical kinetic parameters were calculated through the Tafel plot analysis. From the Tafel plot, it is seen that asymmetry increases gradually at high discharge currents and depths, which rise asymmetricity due to the increasing of the conduction barrier. However, the electrochemical parameters confirm the increasing conduction barrier with increased charge transfer resistance.

摘要

由于有机液体电解质的局限性,目前的发展方向是高性能全固态锂电池(ASSLBs)。对于高性能 ASSLBs,最关键的是具有高离子传导能力的固体电解质(SE),重点是 SE 与活性材料之间的界面分析。在本研究中,我们成功合成了具有高离子传导能力的银氮化物型(LiPSCl)固体电解质,其室温下的离子电导率为 4.8 mS cm。此外,本研究提出了 ASSLBs 中界面的定量分析方法。在微腔电极中限制的单个颗粒的初始放电容量为 1.05 nAh,用于 LiNiCoMnO(NCM622)-LiPSCl 固体电解质材料。初始循环结果表明,由于活性颗粒表面形成固体电解质界面(SEI)层,活性材料具有不可逆性;进一步的第二和第三循环表明具有高可逆性和良好的稳定性。此外,通过 Tafel 图分析计算了电化学动力学参数。从 Tafel 图可以看出,在高放电电流和深度下,不对称性逐渐增加,这是由于传导势垒的增加导致不对称性增加。然而,电化学参数证实了随着电荷转移电阻的增加,传导势垒的增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4e/10144035/d61e8c379d82/molecules-28-03537-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验