Osipova Nadezhda, Budko Andrey, Maksimenko Olga, Shipulo Elena, Vanchugova Ludmila, Chen Wenqian, Gelperina Svetlana, Wacker Matthias G
Nanosystem Ltd., Kolomenskiy Proezd 13A, 115446 Moscow, Russia.
N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science, Kashirskoye Shosse 24, 115478 Moscow, Russia.
Pharmaceutics. 2023 Apr 17;15(4):1258. doi: 10.3390/pharmaceutics15041258.
Pharmacometric analysis is often used to quantify the differences and similarities between formulation prototypes. In the regulatory framework, it plays a significant role in the evaluation of bioequivalence. While non-compartmental analysis provides an unbiased data evaluation, mechanistic compartmental models such as the physiologically-based nanocarrier biopharmaceutics model promise improved sensitivity and resolution for the underlying causes of inequivalence. In the present investigation, both techniques were applied to two nanomaterial-based formulations for intravenous injection, namely, albumin-stabilized rifabutin nanoparticles and rifabutin-loaded PLGA nanoparticles. The antibiotic rifabutin holds great potential for the treatment of severe and acute infections of patients co-infected with human immunodeficiency virus and tuberculosis. The formulations differ significantly in their formulation and material attributes, resulting in an altered biodistribution pattern as confirmed in a biodistribution study in rats. The albumin-stabilized delivery system further undergoes a dose-dependent change in particle size which leads to a small yet significant change in the in vivo performance. A second analysis was conducted comparing the dose fraction-scaled pharmacokinetic profiles of three dose levels of albumin-stabilized rifabutin nanoparticles. The dose strength affects both the nanomaterial-related absorption and biodistribution of the carrier as well as the drug-related distribution and elimination parameters, increasing the background noise and difficulty of detecting inequivalence. Depending on the pharmacokinetic parameter (e.g., AUC, C, Cl), the relative (percentage) difference from the average observed using non-compartmental modeling ranged from 85% to 5.2%. A change in the formulation type (PLGA nanoparticles vs. albumin-stabilized rifabutin nanoparticles) resulted in a similar level of inequivalence as compared to a change in the dose strength. A mechanistic compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model led to an average difference of 152.46% between the two formulation prototypes. Albumin-stabilized rifabutin nanoparticles tested at different dose levels led to a 128.30% difference, potentially due to changes in particle size. A comparison of different dose strengths of PLGA nanoparticles, on average, led to a 3.87% difference. This study impressively illustrates the superior sensitivity of mechanistic compartmental analysis when dealing with nanomedicines.
药动学分析常用于量化制剂原型之间的差异和相似性。在监管框架中,它在生物等效性评估中发挥着重要作用。虽然非房室分析提供了无偏的数据评估,但基于机制的房室模型,如基于生理学的纳米载体生物药剂学模型,有望提高对不等效潜在原因的敏感性和分辨率。在本研究中,这两种技术都应用于两种基于纳米材料的静脉注射制剂,即白蛋白稳定的利福布汀纳米颗粒和载有利福布汀的聚乳酸-羟基乙酸共聚物(PLGA)纳米颗粒。抗生素利福布汀在治疗合并感染人类免疫缺陷病毒和结核病的患者的严重和急性感染方面具有巨大潜力。这些制剂在配方和材料属性上有显著差异,正如在大鼠体内分布研究中所证实的那样,这导致了生物分布模式的改变。白蛋白稳定的递送系统在粒径上还会发生剂量依赖性变化,这会导致体内性能出现微小但显著的变化。进行了第二项分析,比较了三种剂量水平的白蛋白稳定的利福布汀纳米颗粒的剂量分数缩放药代动力学曲线。剂量强度既影响与纳米材料相关的载体吸收和生物分布,也影响与药物相关的分布和消除参数,增加了背景噪声和检测不等效的难度。根据药代动力学参数(例如,曲线下面积(AUC)、血药浓度(C)、清除率(Cl)),使用非房室模型观察到的与平均值的相对(百分比)差异范围为85%至5.2%。与剂量强度的变化相比,制剂类型(PLGA纳米颗粒与白蛋白稳定的利福布汀纳米颗粒)的变化导致了相似程度的不等效。使用基于生理学的纳米载体生物药剂学模型进行的基于机制的房室分析导致两种制剂原型之间的平均差异为152.46%。在不同剂量水平测试的白蛋白稳定的利福布汀纳米颗粒导致了128.30%的差异,这可能是由于粒径的变化。平均而言,PLGA纳米颗粒不同剂量强度的比较导致了3.87%的差异。这项研究令人印象深刻地说明了在处理纳米药物时基于机制的房室分析具有更高的敏感性。