Suppr超能文献

基于深度强化学习的无线可充电传感器网络中的在线一对多充电方案。

Deep Reinforcement Learning-Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network.

机构信息

Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science and Technology, Kunming 650500, China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Sensors (Basel). 2023 Apr 12;23(8):3903. doi: 10.3390/s23083903.

Abstract

Wireless rechargeable sensor networks (WRSN) have been emerging as an effective solution to the energy constraint problem of wireless sensor networks (WSN). However, most of the existing charging schemes use Mobile Charging (MC) to charge nodes one-to-one and do not optimize MC scheduling from a more comprehensive perspective, leading to difficulties in meeting the huge energy demand of large-scale WSNs; therefore, one-to-multiple charging which can charge multiple nodes simultaneously may be a more reasonable choice. To achieve timely and efficient energy replenishment for large-scale WSN, we propose an online one-to-multiple charging scheme based on Deep Reinforcement Learning, which utilizes Double Dueling DQN (3DQN) to jointly optimize the scheduling of both the charging sequence of MC and the charging amount of nodes. The scheme cellularizes the whole network based on the effective charging distance of MC and uses 3DQN to determine the optimal charging cell sequence with the objective of minimizing dead nodes and adjusting the charging amount of each cell being recharged according to the nodes' energy demand in the cell, the network survival time, and MC's residual energy. To obtain better performance and timeliness to adapt to the varying environments, our scheme further utilizes Dueling DQN to improve the stability of training and uses Double DQN to reduce overestimation. Extensive simulation experiments show that our proposed scheme achieves better charging performance compared with several existing typical works, and it has significant advantages in terms of reducing node dead ratio and charging latency.

摘要

无线可充电传感器网络(WRSN)已经成为解决无线传感器网络(WSN)能量约束问题的有效方法。然而,大多数现有的充电方案使用移动充电(MC)一对一地为节点充电,并且没有从更全面的角度优化 MC 调度,这导致难以满足大规模 WSN 的巨大能量需求;因此,同时为多个节点充电可能是更合理的选择。为了实现大规模 WSN 的及时、高效能量补给,我们提出了一种基于深度强化学习的在线一对多充电方案,该方案利用双决斗 DQN(3DQN)联合优化 MC 充电顺序和节点充电量的调度。该方案基于 MC 的有效充电距离对整个网络进行网格化,并使用 3DQN 确定最佳充电小区序列,目标是最小化死节点,并根据小区中节点的能量需求、网络生存时间和 MC 的剩余能量来调整每个充电小区的充电量。为了获得更好的性能和及时性以适应不断变化的环境,我们的方案进一步利用决斗 DQN 来提高训练的稳定性,并使用双 DQN 来减少高估。广泛的仿真实验表明,与几种现有的典型作品相比,我们提出的方案在充电性能方面取得了更好的效果,在降低节点死亡率和充电延迟方面具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d17e/10143104/eaf1723592bd/sensors-23-03903-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验