Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States.
Chem Rev. 2023 Jul 26;123(14):9065-9093. doi: 10.1021/acs.chemrev.2c00851. Epub 2023 Apr 28.
Biomolecular condensates are reversible compartments that form through a process called phase separation. Post-translational modifications like ADP-ribosylation can nucleate the formation of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) chains are remarkably transient modifications with turnover rates on the order of minutes, yet they can be required for the formation of granules in response to oxidative stress, DNA damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase transitions in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein-PAR interactions. We review substantial progress in recent efforts to determine the molecular mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify the exact pathway from PARylation to condensate formation.
生物分子凝聚物是通过称为相分离的过程形成的可逆隔室。翻译后修饰,如 ADP-核糖基化,可以通过加速蛋白质的自组装来引发这些凝聚物的形成。聚(ADP-核糖)(PAR)链是非常短暂的修饰,周转率在分钟范围内,但它们可能是响应氧化应激、DNA 损伤和其他刺激形成颗粒所必需的。此外,PAR 的积累与神经退行性疾病中的不利相变有关,包括阿尔茨海默病、帕金森病和肌萎缩侧索硬化症。在这篇综述中,我们提供了关于 PAR 如何合成和调节、ADP-核糖基化修饰的不同结构和化学性质以及蛋白质-PAR 相互作用的基础知识。我们回顾了最近在确定 PAR 介导的相分离的分子机制方面所取得的重大进展,并且进一步详细说明了 PAR 聚合酶抑制剂如何可能成为神经退行性病理学的有效治疗方法。最后,我们强调需要对体内和体外的 ADP-核糖基化进行严格的生化研究,以阐明从 PARylation 到凝聚物形成的确切途径。