Suppr超能文献

甜味剂与钾通道:糖让我们了解到的通透与门控机制

Sweetening K-channels: what sugar taught us about permeation and gating.

作者信息

Naranjo David, Diaz-Franulic Ignacio

机构信息

Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.

Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.

出版信息

Front Mol Biosci. 2023 Apr 14;10:1063796. doi: 10.3389/fmolb.2023.1063796. eCollection 2023.

Abstract

Because they enable for the modification of both viscosity and osmolarity, sugars have been used as a biophysical probe of voltage-gated K-channels for a while. Viscosity variations made it possible to measure the pore sizes in large and small conductance K-channels using techniques similar to those used in the 1980s to study the gramicidin A channel. These analyses led to the finding that the size of the internal mouth appears to be the primary cause of the conductance differences between Shaker-like channels and large conductance BK-channels. As an osmotic agent, adding sugar unilaterally causes streaming potentials that indicate HO/K cotransport across the BK-channel pore. Osmotic experiments on Shaker K-channels suggest that the pore gate operation and the slow inactivation displace comparable amounts of water. Functionally isolated voltage sensors allow estimation of individual osmotic work for each voltage sensing charge during voltage-activation, reporting dramatic internal and external remodeling of the Voltage Sensing Domain´s solvent exposed surfaces. Remarkably, each charge of the VSD appears to take a unique trajectory. Thus, manipulation of viscosity and osmolarity, together with 3D structures, brings in solid grounds to harmonize function and structure in membrane proteins such as K-channels and, in a wider scope, other structurally dynamic proteins.

摘要

由于糖类能够改变粘度和渗透压,因此一段时间以来它们一直被用作电压门控钾通道的生物物理探针。粘度变化使得使用类似于20世纪80年代研究短杆菌肽A通道的技术来测量大电导和小电导钾通道的孔径成为可能。这些分析得出的结论是,内口的大小似乎是类似摇蚊通道和大电导BK通道之间电导差异的主要原因。作为一种渗透剂,单侧添加糖会产生流动电位,这表明存在通过BK通道孔的HO/K共转运。对摇蚊钾通道的渗透实验表明,孔门操作和缓慢失活排出的水量相当。功能上分离的电压传感器能够估计电压激活期间每个电压传感电荷的个体渗透功,这表明电压传感结构域暴露于溶剂的表面在内部和外部发生了显著重塑。值得注意的是,电压传感结构域的每个电荷似乎都有一条独特的轨迹。因此,粘度和渗透压的操纵,以及三维结构,为协调膜蛋白(如钾通道)以及更广泛范围内其他结构动态蛋白的功能和结构奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e047/10140501/f472546bd89e/fmolb-10-1063796-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验