Alavi S M Mahdi, Vila-Rodriguez Fidel, Mahdi Adam, Goetz Stefan M
The Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, BC Canada.
Surrey Institute for People-Centred AI, University of Surrey, Surrey, UK.
Biomed Eng Lett. 2022 Dec 30;13(2):119-127. doi: 10.1007/s13534-022-00259-3. eCollection 2023 May.
This paper proposes an efficient algorithm for automatic and optimal tuning of pulse amplitude and width for sequential parameter estimation (SPE) of the neural membrane time constant and input-output (IO) curve parameters in closed-loop electromyography-guided (EMG-guided) controllable transcranial magnetic stimulation (cTMS). The proposed SPE is performed by administering a train of optimally tuned TMS pulses and updating the estimations until a stopping rule is satisfied or the maximum number of pulses is reached. The pulse amplitude is computed by the Fisher information maximization. The pulse width is chosen by maximizing a normalized depolarization factor, which is defined to separate the optimization and tuning of the pulse amplitude and width. The normalized depolarization factor maximization identifies the critical pulse width, which is an important parameter in the identifiability analysis, without any prior neurophysiological or anatomical knowledge of the neural membrane. The effectiveness of the proposed algorithm is evaluated through simulation. The results confirm satisfactory estimation of the membrane time constant and IO curve parameters for the simulation case. By defining the stopping rule based on the satisfaction of the convergence criterion with tolerance of 0.01 for 5 consecutive times for all parameters, the IO curve parameters are estimated with 52 TMS pulses, with absolute relative estimation errors (AREs) of less than 7%. The membrane time constant is estimated with 0.67% ARE, and the pulse width value tends to the critical pulse width with 0.16% ARE with 52 TMS pulses. The results confirm that the pulse width and amplitude can be tuned optimally and automatically to estimate the membrane time constant and IO curve parameters in real-time with closed-loop EMG-guided cTMS.
本文提出了一种高效算法,用于在闭环肌电图引导(EMG引导)的可控经颅磁刺激(cTMS)中,对神经膜时间常数和输入-输出(IO)曲线参数进行顺序参数估计(SPE)时自动且最优地调整脉冲幅度和宽度。所提出的SPE通过施加一系列最优调整的TMS脉冲并更新估计值来执行,直到满足停止规则或达到最大脉冲数。脉冲幅度通过费舍尔信息最大化来计算。脉冲宽度通过最大化归一化去极化因子来选择,该因子被定义为将脉冲幅度和宽度的优化与调整分开。归一化去极化因子最大化可识别关键脉冲宽度,这是可识别性分析中的一个重要参数,无需任何关于神经膜的先验神经生理学或解剖学知识。通过仿真评估了所提出算法的有效性。结果证实了对于仿真案例,膜时间常数和IO曲线参数的估计令人满意。通过基于所有参数连续5次满足收敛标准且容差为0.01来定义停止规则,使用52个TMS脉冲估计IO曲线参数,绝对相对估计误差(AREs)小于7%。膜时间常数的估计ARE为0.67%,使用52个TMS脉冲时,脉冲宽度值趋向于关键脉冲宽度,ARE为0.16%。结果证实,在闭环EMG引导的cTMS中,可以最优且自动地调整脉冲宽度和幅度,以实时估计膜时间常数和IO曲线参数。