Suppr超能文献

利用生态声学指数进行城市公园鸟类生物多样性评估的声景分析(以伊朗伊斯法罕市为例)。

Soundscape analysis using eco-acoustic indices for the birds biodiversity assessment in urban parks (case study: Isfahan City, Iran).

机构信息

Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

Environmental Science and Engineering Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

出版信息

Environ Monit Assess. 2023 May 2;195(6):629. doi: 10.1007/s10661-023-11237-2.

Abstract

Biophony and anthrophony analysis as part of the urban soundscape is an efficient approach to bird biodiversity monitoring and to studying the impact of noise pollution in urban parks. Here, we analyzed the soundscape composition to monitor the diversity of birds using acoustic indices and machine learning in 21 urban parks of Isfahan, Iran, in spring 2019. To achieve this purpose four-step method was considered: (i) choosing parks and sampling of sound and bird species; (ii) calculated the six acoustic indices; (iii) calculated the six biodiversity indices; and (iv) statistical analysis for predicting biodiversity index from acoustic indices. Three regression models including support vector machine (SVM), random forest (RF), and elastic net regularization (GLMNET) applied the acoustic indices with minimum and maximum recorded thresholds to feature extraction to measure biodiversity indicators. The optimization model was applied to reduce the independent variables. Generally, more than 18,000 samples were modeled for the dependent variables in each model. The regression results demonstrated that the highest R square was related to the songbird (0.93), evenness (0.92), and richness (0.9) indecies in the SVM model and the Shannon index (0.86) in the RF model. The results of acoustics analysis demonstrated that the Acoustic Entropy Index (H), Normalized Difference Soundscape Index (NDSI), Bioacoustics Index (BI), and Acoustic Complexity Index (ACI) indices were suitable because they could serve as proxies for bird richness and activity that reflect differences in habitat quality. Our findings offer using acoustic indicators as an efficient approach for monitoring bird biodiversity in urban parks.

摘要

生物声与人类声音分析作为城市声景的一部分,是监测鸟类生物多样性和研究城市公园噪声污染影响的有效方法。在这里,我们分析了声景组成,以使用声学指数和机器学习在 2019 年春季监测伊朗伊斯法罕的 21 个城市公园中的鸟类多样性。为了实现这一目标,我们考虑了四步方法:(i)选择公园并对声音和鸟类物种进行采样;(ii)计算六个声学指数;(iii)计算六个生物多样性指数;(iv)统计分析从声学指数预测生物多样性指数。支持向量机(SVM)、随机森林(RF)和弹性网络正则化(GLMNET)三种回归模型应用声学指数,具有最小和最大记录阈值,用于特征提取,以测量生物多样性指标。优化模型用于减少自变量。通常,每个模型的因变量都建模超过 18000 个样本。回归结果表明,SVM 模型中与鸣禽(0.93)、均匀度(0.92)和丰富度(0.9)指数以及 RF 模型中香农指数(0.86)相关的 R 方最高。声学分析的结果表明,声学熵指数(H)、归一化差异声景指数(NDSI)、生物声学指数(BI)和声学复杂度指数(ACI)指数是合适的,因为它们可以作为鸟类丰富度和活动的替代物,反映栖息地质量的差异。我们的研究结果表明,声学指标可以作为监测城市公园鸟类生物多样性的有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验