Suppr超能文献

基于激光雷达的双目视觉测量精度提升策略。

LiDAR-assisted accuracy improvement strategy for binocular visual measurement.

出版信息

Appl Opt. 2023 Mar 20;62(9):2178-2187. doi: 10.1364/AO.476605.

Abstract

The measurement model of binocular vision is inaccurate when the measurement distance is much different from the calibration distance, which affects its practicality. To tackle this challenge, we proposed what we believe to be a novel LiDAR-assisted accuracy improvement strategy for binocular visual measurement. First, the 3D points cloud and 2D images were aligned by the Perspective-n-Point (PNP) algorithm to realize calibration between LiDAR and binocular camera. Then, we established a nonlinear optimization function and proposed a depth-optimization strategy to lessen the error of binocular depth. Finally, the size measurement model of binocular vision based on the optimized depth is built to verify the effectiveness of our strategy. The experimental results show that our strategy can improve the depth accuracy compared to three stereo matching methods. The mean error of binocular visual measurement decreased from 33.46% to 1.70% at different distances. This paper provides an effective strategy for improving the measurement accuracy of binocular vision at different distances.

摘要

当测量距离与校准距离相差很大时,双目视觉的测量模型会不准确,从而影响其实用性。针对这一挑战,我们提出了一种基于激光雷达的双目视觉测量精度改进的新策略。首先,通过透视 n 点(PNP)算法对齐 3D 点云和 2D 图像,实现激光雷达和双目相机之间的校准。然后,建立了一个非线性优化函数,并提出了一种深度优化策略,以减少双目深度的误差。最后,建立了基于优化深度的双目视觉尺寸测量模型,以验证我们策略的有效性。实验结果表明,与三种立体匹配方法相比,我们的策略可以提高深度精度。不同距离下双目视觉测量的平均误差从 33.46%降低到 1.70%。本文为提高不同距离下双目视觉测量的精度提供了一种有效的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验