Suppr超能文献

用于深度光度立体视觉的连续材质反射率图。

Continuous material reflectance map for deep photometric stereo.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2023 Apr 1;40(4):792-802. doi: 10.1364/JOSAA.480577.

Abstract

Solving calibrated photometric stereo under a sparse set of lights is of great interest for real-world applications. Since neural networks show advantages in dealing with material appearance, this paper proposes a bidirectional reflectance distribution function (BRDF) representation, which is based on reflectance maps for a sparse set of lights and can handle various types of BRDFs. We discuss the optimal way to compute these BRDF-based photometric stereo maps regarding the shape, size, and resolution, and experimentally investigate the contribution of these maps to normal map estimation. The training dataset was analyzed to establish the BRDF data to use between the measured and parametric BRDFs. The proposed method was compared to state-of-the-art photometric stereo algorithms for different datasets from numerical rendering simulations, DiliGenT, and our two acquisition systems. The results show that our representation outperforms the observation maps as BRDF representation for a neural network for various surface appearances on specular and diffuse areas.

摘要

解决稀疏光照下标定光度立体学问题对于实际应用具有重要意义。由于神经网络在处理材料外观方面具有优势,因此本文提出了一种双向反射分布函数 (BRDF) 表示方法,该方法基于稀疏光照的反射图,可以处理各种类型的 BRDF。我们讨论了针对形状、大小和分辨率最佳的计算这些基于 BRDF 的光度立体学图的方法,并实验研究了这些图对法线图估计的贡献。对训练数据集进行了分析,以确定在测量和参数 BRDF 之间使用的 BRDF 数据。将所提出的方法与不同数据集的最新光度立体算法进行了比较,这些数据集来自于数值渲染模拟、DiliGenT 和我们的两个采集系统。结果表明,对于镜面和漫射区域的各种表面外观,我们的表示方法优于作为神经网络的 BRDF 表示的观测图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验