Suppr超能文献

基于病例-队列设计的高维 Cox 比例风险模型的联合筛选

Sure Joint Screening for High Dimensional Cox's Proportional Hazards Model Under the Case-Cohort Design.

机构信息

Department of Mathematics, School of Mathematical Sciences, Ocean University of China, Qingdao, China.

Department of Biostatistics, University of California at Los Angeles, Los Angeles, California, USA.

出版信息

J Comput Biol. 2023 Jun;30(6):663-677. doi: 10.1089/cmb.2022.0416. Epub 2023 May 3.

Abstract

This study develops a sure joint feature screening method for the case-cohort design with ultrahigh-dimensional covariates. Our method is based on a sparsity-restricted Cox proportional hazards model. An iterative reweighted hard thresholding algorithm is proposed to approximate the sparsity-restricted, pseudo-partial likelihood estimator for joint screening. We rigorously show that our method possesses the sure screening property, with the probability of retaining all relevant covariates tending to 1 as the sample size goes to infinity. Our simulation results demonstrate that the proposed procedure has substantially improved screening performance over some existing feature screening methods for the case-cohort design, especially when some covariates are jointly correlated, but marginally uncorrelated, with the event time outcome. A real data illustration is provided using breast cancer data with high-dimensional genomic covariates. We have implemented the proposed method using MATLAB and made it available to readers through GitHub.

摘要

本研究为超高维协变量的病例-队列设计开发了一种可靠的联合特征筛选方法。我们的方法基于稀疏限制的 Cox 比例风险模型。提出了一种迭代重加权硬阈值算法来近似稀疏限制的伪部分似然估计量的联合筛选。我们严格证明了我们的方法具有可靠的筛选特性,随着样本量的增加,保留所有相关协变量的概率趋于 1。我们的模拟结果表明,与病例-队列设计的一些现有特征筛选方法相比,所提出的程序在筛选性能方面有了显著提高,特别是当一些协变量与事件时间结果呈联合相关但边缘不相关时。通过具有高维基因组协变量的乳腺癌数据提供了一个真实数据示例。我们已经使用 MATLAB 实现了所提出的方法,并通过 GitHub 提供给读者。

相似文献

1
Sure Joint Screening for High Dimensional Cox's Proportional Hazards Model Under the Case-Cohort Design.
J Comput Biol. 2023 Jun;30(6):663-677. doi: 10.1089/cmb.2022.0416. Epub 2023 May 3.
2
Feature Screening in Ultrahigh Dimensional Cox's Model.
Stat Sin. 2016;26:881-901. doi: 10.5705/ss.2014.171.
3
A new joint screening method for right-censored time-to-event data with ultra-high dimensional covariates.
Stat Methods Med Res. 2020 Jun;29(6):1499-1513. doi: 10.1177/0962280219864710. Epub 2019 Jul 30.
4
Feature screening for case-cohort studies with failure time outcome.
Scand Stat Theory Appl. 2021 Mar;48(1):349-370. doi: 10.1111/sjos.12503. Epub 2020 Nov 16.
5
Feature screening in ultrahigh-dimensional varying-coefficient Cox model.
J Multivar Anal. 2019 May;171:284-297. doi: 10.1016/j.jmva.2018.12.009. Epub 2018 Dec 28.
7
Feature Screening in Ultrahigh Dimensional Generalized Varying-coefficient Models.
Stat Sin. 2020;30:1049-1067. doi: 10.5705/ss.202017.0362.
8
Sparse partial least-squares regression for high-throughput survival data analysis.
Stat Med. 2013 Dec 30;32(30):5340-52. doi: 10.1002/sim.5975. Epub 2013 Sep 18.
9
Conditional screening for ultrahigh-dimensional survival data in case-cohort studies.
Lifetime Data Anal. 2021 Oct;27(4):632-661. doi: 10.1007/s10985-021-09531-7. Epub 2021 Aug 20.
10
Comparison of methods for estimating the attributable risk in the context of survival analysis.
BMC Med Res Methodol. 2017 Jan 23;17(1):10. doi: 10.1186/s12874-016-0285-1.

本文引用的文献

1
Scalable Algorithms for Large Competing Risks Data.
J Comput Graph Stat. 2021;30(3):685-693. doi: 10.1080/10618600.2020.1841650. Epub 2020 Dec 11.
2
Feature screening for case-cohort studies with failure time outcome.
Scand Stat Theory Appl. 2021 Mar;48(1):349-370. doi: 10.1111/sjos.12503. Epub 2020 Nov 16.
3
A selective overview of feature screening methods with applications to neuroimaging data.
Wiley Interdiscip Rev Comput Stat. 2019 Mar-Apr;11(2). doi: 10.1002/wics.1454. Epub 2018 Sep 21.
4
A new joint screening method for right-censored time-to-event data with ultra-high dimensional covariates.
Stat Methods Med Res. 2020 Jun;29(6):1499-1513. doi: 10.1177/0962280219864710. Epub 2019 Jul 30.
5
Variable selection for case-cohort studies with failure time outcome.
Biometrika. 2016 Sep;103(3):547-562. doi: 10.1093/biomet/asw027. Epub 2016 Aug 10.
6
Feature Screening in Ultrahigh Dimensional Cox's Model.
Stat Sin. 2016;26:881-901. doi: 10.5705/ss.2014.171.
7
A selective overview of feature screening for ultrahigh-dimensional data.
Sci China Math. 2015 Oct;58(10):2033-2054. doi: 10.1007/s11425-015-5062-9. Epub 2015 Aug 22.
8
Censored Rank Independence Screening for High-dimensional Survival Data.
Biometrika. 2014;101(4):799-814. doi: 10.1093/biomet/asu047.
9
The Sparse MLE for Ultra-High-Dimensional Feature Screening.
J Am Stat Assoc. 2014;109(507):1257-1269. doi: 10.1080/01621459.2013.879531.
10
Nonparametric Independence Screening in Sparse Ultra-High Dimensional Varying Coefficient Models.
J Am Stat Assoc. 2014;109(507):1270-1284. doi: 10.1080/01621459.2013.879828.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验