Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan.
Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan.
J Comput Chem. 2023 Jul 30;44(20):1740-1749. doi: 10.1002/jcc.27124. Epub 2023 May 4.
Generalized replica exchange with solute tempering (gREST) is one of the enhanced sampling algorithms for proteins or other systems with rugged energy landscapes. Unlike the replica-exchange molecular dynamics (REMD) method, solvent temperatures are the same in all replicas, while solute temperatures are different and are exchanged frequently between replicas for exploring various solute structures. Here, we apply the gREST scheme to large biological systems containing over one million atoms using a large number of processors in a supercomputer. First, communication time on a multi-dimensional torus network is reduced by matching each replica to MPI processors optimally. This is applicable not only to gREST but also to other multi-copy algorithms. Second, energy evaluations, which are necessary for the multistate bennet acceptance ratio (MBAR) method for free energy estimations, are performed on-the-fly during the gREST simulations. Using these two advanced schemes, we observed 57.72 ns/day performance in 128-replica gREST calculations with 1.5 million atoms system using 16,384 nodes in Fugaku. These schemes implemented in the latest version of GENESIS software could open new possibilities to answer unresolved questions on large biomolecular complex systems with slow conformational dynamics.
广义复制交换与溶质调温(gREST)是一种增强采样算法,适用于具有崎岖能量景观的蛋白质或其他系统。与复制交换分子动力学(REMD)方法不同,所有副本中的溶剂温度相同,而溶质温度不同,并在副本之间频繁交换以探索各种溶质结构。在这里,我们在超级计算机中使用大量处理器将 gREST 方案应用于包含超过一百万原子的大型生物系统。首先,通过将每个副本与 MPI 处理器最佳匹配,减少多维环面网络上的通信时间。这不仅适用于 gREST,也适用于其他多副本算法。其次,在 gREST 模拟过程中,进行了用于自由能估计的多态 Bennett 接受率(MBAR)方法所需的能量评估。使用这两个高级方案,我们在 Fugaku 上使用 16384 个节点观察到了 128 个副本 gREST 计算的 57.72 ns/day 的性能,该系统具有 150 万个原子。GENESIS 软件的最新版本中实现的这些方案为回答具有缓慢构象动力学的大型生物分子复合物系统的未解决问题开辟了新的可能性。