Suppr超能文献

使用全原子图表示和 SE(3)-等变图转换器进行原子蛋白质结构精修。

Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer.

机构信息

Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, United States.

出版信息

Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad298.

Abstract

MOTIVATION

The state-of-art protein structure prediction methods such as AlphaFold are being widely used to predict structures of uncharacterized proteins in biomedical research. There is a significant need to further improve the quality and nativeness of the predicted structures to enhance their usability. In this work, we develop ATOMRefine, a deep learning-based, end-to-end, all-atom protein structural model refinement method. It uses a SE(3)-equivariant graph transformer network to directly refine protein atomic coordinates in a predicted tertiary structure represented as a molecular graph.

RESULTS

The method is first trained and tested on the structural models in AlphaFoldDB whose experimental structures are known, and then blindly tested on 69 CASP14 regular targets and 7 CASP14 refinement targets. ATOMRefine improves the quality of both backbone atoms and all-atom conformation of the initial structural models generated by AlphaFold. It also performs better than two state-of-the-art refinement methods in multiple evaluation metrics including an all-atom model quality score-the MolProbity score based on the analysis of all-atom contacts, bond length, atom clashes, torsion angles, and side-chain rotamers. As ATOMRefine can refine a protein structure quickly, it provides a viable, fast solution for improving protein geometry and fixing structural errors of predicted structures through direct coordinate refinement.

AVAILABILITY AND IMPLEMENTATION

The source code of ATOMRefine is available in the GitHub repository (https://github.com/BioinfoMachineLearning/ATOMRefine). All the required data for training and testing are available at https://doi.org/10.5281/zenodo.6944368.

摘要

动机

最先进的蛋白质结构预测方法,如 AlphaFold,正被广泛应用于生物医学研究中预测未被描述的蛋白质的结构。为了提高预测结构的质量和自然度,增强其可用性,进一步改进这些方法具有重要意义。在这项工作中,我们开发了一种基于深度学习的、端到端的、全原子蛋白质结构模型细化方法 ATOMRefine。它使用 SE(3)等变图变换网络直接细化由分子图表示的预测三级结构中的蛋白质原子坐标。

结果

该方法首先在结构模型上进行训练和测试,这些结构模型的实验结构是已知的,然后在 69 个 CASP14 常规目标和 7 个 CASP14 细化目标上进行盲目测试。ATOMRefine 提高了由 AlphaFold 生成的初始结构模型的骨架原子和全原子构象的质量。在基于全原子接触、键长、原子碰撞、扭转角和侧链构象分析的 MolProbity 评分等多个评估指标上,它的表现也优于两种最先进的细化方法。由于 ATOMRefine 可以快速细化蛋白质结构,因此它通过直接坐标细化提供了一种可行的、快速的解决方案,用于改善预测结构的几何形状和修复结构错误。

可用性和实现

ATOMRefine 的源代码可在 GitHub 存储库(https://github.com/BioinfoMachineLearning/ATOMRefine)中获得。训练和测试所需的所有数据均可在 https://doi.org/10.5281/zenodo.6944368 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4416/10191610/58f3e6f92052/btad298f1.jpg

相似文献

2
3D-equivariant graph neural networks for protein model quality assessment.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad030.
3
A gated graph transformer for protein complex structure quality assessment and its performance in CASP15.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i308-i317. doi: 10.1093/bioinformatics/btad203.
4
Combining protein sequences and structures with transformers and equivariant graph neural networks to predict protein function.
Bioinformatics. 2023 Jun 30;39(39 Suppl 1):i318-i325. doi: 10.1093/bioinformatics/btad208.
5
Improving deep learning-based protein distance prediction in CASP14.
Bioinformatics. 2021 Oct 11;37(19):3190-3196. doi: 10.1093/bioinformatics/btab355.
6
Enhancing AlphaFold-Multimer-based Protein Complex Structure Prediction with MULTICOM in CASP15.
bioRxiv. 2023 May 18:2023.05.16.541055. doi: 10.1101/2023.05.16.541055.
8
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14.
Proteins. 2022 Jan;90(1):58-72. doi: 10.1002/prot.26186. Epub 2021 Jul 27.
9
A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
Bioinformatics. 2022 Mar 28;38(7):1904-1910. doi: 10.1093/bioinformatics/btac063.

引用本文的文献

1
AlphaFold model quality self-assessment improvement via deep graph learning.
Protein Sci. 2025 Sep;34(9):e70274. doi: 10.1002/pro.70274.
2
Utilizing protein structure graph embeddings to predict the pathogenicity of missense variants.
NAR Genom Bioinform. 2025 Jul 24;7(3):lqaf097. doi: 10.1093/nargab/lqaf097. eCollection 2025 Sep.
5
Making Use of Averaging Methods in MODELLER for Protein Structure Prediction.
Int J Mol Sci. 2024 Jan 31;25(3):1731. doi: 10.3390/ijms25031731.
6
Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2.
Biomolecules. 2023 Dec 21;14(1):14. doi: 10.3390/biom14010014.
7
Tertiary structure assessment at CASP15.
Proteins. 2023 Dec;91(12):1616-1635. doi: 10.1002/prot.26593. Epub 2023 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验