Suppr超能文献

利用深度学习系统辅助结肠镜下微小结肠息肉检测的计算机自动化技术;印度首创的本土算法。

Computer-aided automated diminutive colonic polyp detection in colonoscopy by using deep machine learning system; first indigenous algorithm developed in India.

机构信息

Indian Institute of Liver and Digestive Sciences, Sitala (East), Jagadishpur, Sonarpur, 24 Parganas (South), Kolkata, 700 150, India.

Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur, 440 010, India.

出版信息

Indian J Gastroenterol. 2023 Apr;42(2):226-232. doi: 10.1007/s12664-022-01331-7. Epub 2023 May 5.

Abstract

BACKGROUND

Colonic polyps can be detected and resected during a colonoscopy before cancer development. However, about 1/4th of the polyps could be missed due to their small size, location or human errors. An artificial intelligence (AI) system can improve polyp detection and reduce colorectal cancer incidence. We are developing an indigenous AI system to detect diminutive polyps in real-life scenarios that can be compatible with any high-definition colonoscopy and endoscopic video- capture software.

METHODS

We trained a masked region-based convolutional neural network model to detect and localize colonic polyps. Three independent datasets of colonoscopy videos comprising 1,039 image frames were used and divided into a training dataset of 688 frames and a testing dataset of 351 frames. Of 1,039 image frames, 231 were from real-life colonoscopy videos from our centre. The rest were from publicly available image frames already modified to be directly utilizable for developing the AI system. The image frames of the testing dataset were also augmented by rotating and zooming the images to replicate real-life distortions of images seen during colonoscopy. The AI system was trained to localize the polyp by creating a 'bounding box'. It was then applied to the testing dataset to test its accuracy in detecting polyps automatically.

RESULTS

The AI system achieved a mean average precision (equivalent to specificity) of 88.63% for automatic polyp detection. All polyps in the testing were identified by AI, i.e., no false-negative result in the testing dataset (sensitivity of 100%). The mean polyp size in the study was 5 (± 4) mm. The mean processing time per image frame was 96.4 minutes.

CONCLUSIONS

This AI system, when applied to real-life colonoscopy images, having wide variations in bowel preparation and small polyp size, can detect colonic polyps with a high degree of accuracy.

摘要

背景

在癌症发生之前,可以通过结肠镜检查发现并切除结肠息肉。然而,由于息肉体积小、位置或人为错误,约有 1/4 的息肉可能会被遗漏。人工智能(AI)系统可以提高息肉检测率并降低结直肠癌发病率。我们正在开发一种本土 AI 系统,以在真实场景中检测微小息肉,该系统可以与任何高清结肠镜检查和内镜视频捕获软件兼容。

方法

我们训练了一个基于掩模区域的卷积神经网络模型来检测和定位结肠息肉。使用了三个独立的结肠镜检查视频数据集,包含 1039 个图像帧,并分为 688 个训练数据集和 351 个测试数据集。在 1039 个图像帧中,有 231 个来自我们中心的真实结肠镜视频。其余的来自已经修改为可直接用于开发 AI 系统的公共可用图像帧。测试数据集的图像帧也通过旋转和缩放图像进行了扩充,以模拟结肠镜检查中看到的真实图像失真。AI 系统通过创建“边界框”来定位息肉。然后将其应用于测试数据集,以自动检测息肉的准确性。

结果

AI 系统在自动检测息肉方面的平均准确率(相当于特异性)为 88.63%。AI 识别出了测试数据集中的所有息肉,即测试数据集中没有假阴性结果(敏感性为 100%)。研究中息肉的平均大小为 5(±4)mm。每张图像帧的平均处理时间为 96.4 分钟。

结论

当应用于具有广泛肠道准备和小息肉尺寸变化的真实结肠镜图像时,该 AI 系统可以高度准确地检测结肠息肉。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验