Department of Developmental Biology, Stanford University, Stanford, CA, USA.
Biophysics Program, Stanford University, Stanford, CA, USA.
Mol Cell. 2023 May 4;83(9):1377-1392.e6. doi: 10.1016/j.molcel.2023.04.008.
Although population-level analyses revealed significant roles for CTCF and cohesin in mammalian genome organization, their contributions at the single-cell level remain incompletely understood. Here, we used a super-resolution microscopy approach to measure the effects of removal of CTCF or cohesin in mouse embryonic stem cells. Single-chromosome traces revealed cohesin-dependent loops, frequently stacked at their loop anchors forming multi-way contacts (hubs), bridging across TAD boundaries. Despite these bridging interactions, chromatin in intervening TADs was not intermixed, remaining separated in distinct loops around the hub. At the multi-TAD scale, steric effects from loop stacking insulated local chromatin from ultra-long range (>4 Mb) contacts. Upon cohesin removal, the chromosomes were more disordered and increased cell-cell variability in gene expression. Our data revise the TAD-centric understanding of CTCF and cohesin and provide a multi-scale, structural picture of how they organize the genome on the single-cell level through distinct contributions to loop stacking.
尽管群体水平的分析揭示了 CTCF 和黏合蛋白在哺乳动物基因组组织中的重要作用,但它们在单细胞水平上的贡献仍不完全清楚。在这里,我们使用超分辨率显微镜方法来测量去除小鼠胚胎干细胞中的 CTCF 或黏合蛋白的效果。单染色体轨迹显示黏合蛋白依赖性环,通常在其环锚定点堆积形成多向接触(枢纽),跨越 TAD 边界桥接。尽管存在这些桥接相互作用,但间隔 TAD 中的染色质没有混合,而是在枢纽周围的不同环中保持分离。在多 TAD 尺度上,来自环堆积的空间位阻效应使局部染色质免受超长距离(>4 Mb)接触的影响。去除黏合蛋白后,染色体更加无序,基因表达的细胞间变异性增加。我们的数据修正了以 TAD 为中心的 CTCF 和黏合蛋白的理解,并提供了一个多尺度的结构图像,说明它们如何通过对环堆积的不同贡献在单细胞水平上组织基因组。