Suppr超能文献

相似文献

1
Loop stacking organizes genome folding from TADs to chromosomes.
Mol Cell. 2023 May 4;83(9):1377-1392.e6. doi: 10.1016/j.molcel.2023.04.008.
3
Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
Cell Rep. 2019 Jun 18;27(12):3500-3510.e4. doi: 10.1016/j.celrep.2019.05.078.
4
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.
5
Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
Mol Cell. 2021 Aug 5;81(15):3082-3095.e6. doi: 10.1016/j.molcel.2021.06.008. Epub 2021 Jun 30.
6
Distinct Classes of Chromatin Loops Revealed by Deletion of an RNA-Binding Region in CTCF.
Mol Cell. 2019 Nov 7;76(3):395-411.e13. doi: 10.1016/j.molcel.2019.07.039. Epub 2019 Sep 12.
8
Chromatin jets define the properties of cohesin-driven in vivo loop extrusion.
Mol Cell. 2022 Oct 20;82(20):3769-3780.e5. doi: 10.1016/j.molcel.2022.09.003. Epub 2022 Sep 30.
9
CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
Nature. 2023 Apr;616(7958):822-827. doi: 10.1038/s41586-023-05961-5. Epub 2023 Apr 19.
10
CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism.
Nucleus. 2020 Dec;11(1):132-148. doi: 10.1080/19491034.2020.1782024.

引用本文的文献

2
A 3D genome compendium of breast cancer progression.
iScience. 2025 Aug 5;28(9):113268. doi: 10.1016/j.isci.2025.113268. eCollection 2025 Sep 19.
3
Tracing the evolution of single-cell 3D genomes in Kras-driven cancers.
Nat Genet. 2025 Aug 18. doi: 10.1038/s41588-025-02297-w.
5
Dynamic barriers modulate cohesin positioning and genome folding at fixed occupancy.
Genome Res. 2025 Aug 1;35(8):1745-1757. doi: 10.1101/gr.280108.124.
6
Phase Separation in Chromatin Organization and Human Diseases.
Int J Mol Sci. 2025 May 28;26(11):5156. doi: 10.3390/ijms26115156.
7
Geometrically encoded positioning of introns, intergenic segments, and exons in the human genome.
bioRxiv. 2025 May 29:2025.05.29.656862. doi: 10.1101/2025.05.29.656862.
8
CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation.
Nat Struct Mol Biol. 2025 May 13. doi: 10.1038/s41594-025-01555-z.
10
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.

本文引用的文献

1
Crumpled polymer with loops recapitulates key features of chromosome organization.
Phys Rev X. 2023 Oct-Dec;13(4). doi: 10.1103/physrevx.13.041029. Epub 2023 Nov 13.
2
Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition.
Nat Genet. 2024 Mar;56(3):493-504. doi: 10.1038/s41588-024-01661-6. Epub 2024 Feb 15.
3
Boundary stacking interactions enable cross-TAD enhancer-promoter communication during limb development.
Nat Genet. 2024 Feb;56(2):306-314. doi: 10.1038/s41588-023-01641-2. Epub 2024 Jan 18.
5
Structural elements promote architectural stripe formation and facilitate ultra-long-range gene regulation at a human disease locus.
Mol Cell. 2023 May 4;83(9):1446-1461.e6. doi: 10.1016/j.molcel.2023.03.009. Epub 2023 Mar 29.
6
Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness.
Nat Genet. 2023 Feb;55(2):280-290. doi: 10.1038/s41588-022-01295-6. Epub 2023 Jan 30.
7
Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1.
Nat Genet. 2022 Dec;54(12):1919-1932. doi: 10.1038/s41588-022-01223-8. Epub 2022 Dec 5.
8
Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2201883119. doi: 10.1073/pnas.2201883119. Epub 2022 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验