Suppr超能文献

人工智能在糖尿病性视网膜病变筛查中的应用:在真实环境中使用手持式眼底相机进行临床评估。

Artificial intelligence in diabetic retinopathy screening: clinical assessment using handheld fundus camera in a real-life setting.

机构信息

Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.

Fondazione per la Macula Onlus, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili (DINOGMI), University Eye Clinic, Genoa, Italy.

出版信息

Acta Diabetol. 2023 Aug;60(8):1083-1088. doi: 10.1007/s00592-023-02104-0. Epub 2023 May 8.

Abstract

AIM

Diabetic retinopathy (DR) represents the main cause of vision loss among working age people. A prompt screening of this condition may prevent its worst complications. This study aims to validate the in-built artificial intelligence (AI) algorithm Selena+ of a handheld fundus camera (Optomed Aurora, Optomed, Oulu, Finland) in a first line screening of a real-world clinical setting.

METHODS

It was an observational cross-sectional study including 256 eyes of 256 consecutive patients. The sample included both diabetic and non-diabetic patients. Each patient received a 50°, macula centered, non-mydriatic fundus photography and, after pupil dilation, a complete fundus examination by an experienced retina specialist. All images were after analyzed by a skilled operator and by the AI algorithm. The results of the three procedures were then compared.

RESULTS

The agreement between the operator-based fundus analysis in bio-microscopy and the fundus photographs was of 100%. Among the DR patients the AI algorithm revealed signs of DR in 121 out of 125 subjects (96.8%) and no signs of DR 122 of the 126 non-diabetic patients (96.8%). The sensitivity of the AI algorithm was 96.8% and the specificity 96.8%. The overall concordance coefficient k (95% CI) between AI-based assessment and fundus biomicroscopy was 0.935 (0.891-0.979).

CONCLUSIONS

The Aurora fundus camera is effective in a first line screening of DR. Its in-built AI software can be considered a reliable tool to automatically identify the presence of signs of DR and therefore employed as a promising resource in large screening campaigns.

摘要

目的

糖尿病视网膜病变(DR)是导致工作年龄段人群视力丧失的主要原因。及时筛查可以预防其最严重的并发症。本研究旨在验证 Optomed Aurora 手持眼底相机(Optomed,芬兰奥卢)中内置人工智能(AI)算法 Selena+在真实临床环境中的一线筛查中的效果。

方法

这是一项观察性横断面研究,共纳入 256 例 256 只眼的连续患者。样本包括糖尿病患者和非糖尿病患者。每位患者均接受 50°黄斑中心、非散瞳眼底照相,散瞳后由经验丰富的视网膜专家进行全面眼底检查。所有图像均由熟练的操作员和 AI 算法进行分析。然后比较三种方法的结果。

结果

在生物显微镜下的眼底分析与眼底照相之间的一致性为 100%。在 DR 患者中,AI 算法在 125 例患者中的 121 例(96.8%)和 126 例非糖尿病患者中的 122 例(96.8%)中发现了 DR 迹象。AI 算法的敏感性为 96.8%,特异性为 96.8%。AI 评估与眼底生物显微镜之间的总体一致性系数 k(95%CI)为 0.935(0.891-0.979)。

结论

Aurora 眼底相机可有效用于 DR 的一线筛查。其内置的 AI 软件可作为一种可靠的工具,用于自动识别 DR 迹象的存在,因此可作为大规模筛查活动中的有前途的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2290/10289988/93494a96f05a/592_2023_2104_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验