Suppr超能文献

利用可解释人工智能和机器学习技术预测疾病共病:系统评价。

Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review.

机构信息

Institute of Health Informatics, University College London, London, UK; Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah, Saudi Arabia.

Institute of Health Informatics, University College London, London, UK.

出版信息

Int J Med Inform. 2023 Jul;175:105088. doi: 10.1016/j.ijmedinf.2023.105088. Epub 2023 May 4.

Abstract

OBJECTIVE

Disease comorbidity is a major challenge in healthcare affecting the patient's quality of life and costs. AI-based prediction of comorbidities can overcome this issue by improving precision medicine and providing holistic care. The objective of this systematic literature review was to identify and summarise existing machine learning (ML) methods for comorbidity prediction and evaluate the interpretability and explainability of the models.

MATERIALS AND METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework was used to identify articles in three databases: Ovid Medline, Web of Science and PubMed. The literature search covered a broad range of terms for the prediction of disease comorbidity and ML, including traditional predictive modelling.

RESULTS

Of 829 unique articles, 58 full-text papers were assessed for eligibility. A final set of 22 articles with 61 ML models was included in this review. Of the identified ML models, 33 models achieved relatively high accuracy (80-95%) and AUC (0.80-0.89). Overall, 72% of studies had high or unclear concerns regarding the risk of bias.

DISCUSSION

This systematic review is the first to examine the use of ML and explainable artificial intelligence (XAI) methods for comorbidity prediction. The chosen studies focused on a limited scope of comorbidities ranging from 1 to 34 (mean = 6), and no novel comorbidities were found due to limited phenotypic and genetic data. The lack of standard evaluation for XAI hinders fair comparisons.

CONCLUSION

A broad range of ML methods has been used to predict the comorbidities of various disorders. With further development of explainable ML capacity in the field of comorbidity prediction, there is a significant possibility of identifying unmet health needs by highlighting comorbidities in patient groups that were not previously recognised to be at risk for particular comorbidities.

摘要

目的

疾病共病是医疗保健中的一个主要挑战,影响患者的生活质量和成本。基于人工智能的共病预测可以通过提高精准医学和提供整体护理来克服这一问题。本系统文献综述的目的是识别和总结现有的用于共病预测的机器学习(ML)方法,并评估模型的可解释性和可解释性。

材料和方法

使用系统评价和荟萃分析的首选报告项目(PRISMA)框架在三个数据库中识别文章:Ovid Medline、Web of Science 和 PubMed。文献检索涵盖了疾病共病和 ML 的广泛预测术语,包括传统预测建模。

结果

在 829 篇独特的文章中,有 58 篇全文文章符合入选标准。最终纳入了 22 篇全文文章和 61 个 ML 模型。在所确定的 ML 模型中,有 33 个模型达到了相对较高的准确性(80-95%)和 AUC(0.80-0.89)。总体而言,72%的研究对偏倚风险存在高或不明确的担忧。

讨论

这是第一篇检查机器学习和可解释人工智能(XAI)方法在共病预测中的使用的系统综述。所选研究集中在范围有限的共病,从 1 到 34 不等(平均值=6),由于表型和遗传数据有限,没有发现新的共病。XAI 的缺乏标准评估阻碍了公平比较。

结论

已经使用了广泛的 ML 方法来预测各种疾病的共病。随着共病预测领域可解释性 ML 能力的进一步发展,通过突出以前未被认为有特定共病风险的患者群体中的共病,有可能发现未满足的健康需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验