Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
University of Toronto, Department of Electrical and Computer Engineering, 10 King's College Road, ON, M5S 3G4, Toronto, Canada.
Nat Commun. 2023 May 8;14(1):2641. doi: 10.1038/s41467-023-38260-8.
Laser beam scanning is central to many applications, including displays, microscopy, three-dimensional mapping, and quantum information. Reducing the scanners to microchip form factors has spurred the development of very-large-scale photonic integrated circuits of optical phased arrays and focal plane switched arrays. An outstanding challenge remains to simultaneously achieve a compact footprint, broad wavelength operation, and low power consumption. Here, we introduce a laser beam scanner that meets these requirements. Using microcantilevers embedded with silicon nitride nanophotonic circuitry, we demonstrate broadband, one- and two-dimensional steering of light with wavelengths from 410 nm to 700 nm. The microcantilevers have ultracompact ~0.1 mm areas, consume ~31 to 46 mW of power, are simple to control, and emit a single light beam. The microcantilevers are monolithically integrated in an active photonic platform on 200-mm silicon wafers. The microcantilever-integrated photonic circuits miniaturize and simplify light projectors to enable versatile, power-efficient, and broadband laser scanner microchips.
激光束扫描是许多应用的核心,包括显示、显微镜、三维测绘和量子信息。将扫描仪缩小到微芯片形式因子,推动了光学相控阵和焦平面切换阵列的大规模光子集成电路的发展。一个突出的挑战仍然是同时实现紧凑的占地面积、宽波长操作和低功耗。在这里,我们介绍了一种满足这些要求的激光束扫描仪。我们使用嵌入氮化硅纳米光子电路的微悬臂梁,演示了从 410nm 到 700nm 的宽带、一维和二维光转向。微悬臂梁的面积超紧凑,约为 0.1mm²,功耗约为 31 至 46mW,易于控制,并且只发射单束光。微悬臂梁在 200mm 硅片上的有源光子平台上进行单片集成。微悬臂梁集成光子电路使投影仪小型化和简化,从而实现多功能、高能效和宽带的激光扫描微芯片。