Suppr超能文献

用于宽带高响应二维/三维光电二极管的石墨烯吸收体上的等离子纳米粒子。

Plasmonic Nanoparticles on Graphene Absorber for Broadband High Responsivity 2D/3D Photodiode.

机构信息

School of Electrical Engineering, Graphene/2D Materials Research Center, Center for Advanced Materials Discovery towards 3D Display, KAIST, Daehakro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Convergence Semiconductor Research Center, School of Electronics and Electrical Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea.

出版信息

ACS Nano. 2023 May 23;17(10):9262-9271. doi: 10.1021/acsnano.3c00566. Epub 2023 May 9.

Abstract

To overcome the image deterioration caused by pixel miniaturization resulting from the high-resolution trend of CIS (CMOS image sensor) technology, a photodiode working with an enhanced mechanism based on a distinctive device structure from the existing one is considerably required. In this study, our photodiode, consisting of gold nanoparticles/monolayer graphene/n-type trilayer MoS/p-type Si bulk, achieved ultrafast rising/falling times of 28.6 ns/30.4 ns due to the spatially confined narrow depletion width (DW) resulting from the 2D/3D heterojunction. To compensate for the expected low absorbance due to the narrow DW, plasmonic gold nanoparticles on monolayer graphene are introduced, revealing broadband enhanced EQE of an average of 187% in the spectral range of 420-730 nm and the maximum EQE reaching 847% at 5 nW for a 520 nm wavelength. The broadband enhancement was further investigated through multiphysics simulation, and carrier multiplication in graphene was discussed for the reason for exceeding 100% EQE in our reverse biased photodiode.

摘要

为了克服 CIS(互补金属氧化物半导体图像传感器)技术的高分辨率趋势导致的像素微型化引起的图像劣化,非常需要一种基于与现有器件结构不同的独特器件结构工作的光电二极管,以增强工作机制。在这项研究中,我们的光电二极管由金纳米粒子/单层石墨烯/n 型三层 MoS/p 型 Si 体组成,由于 2D/3D 异质结导致的空间限制的窄耗尽宽度 (DW),实现了超快的上升/下降时间 28.6 ns/30.4 ns。为了弥补由于窄 DW 预期的低吸收率,在单层石墨烯上引入了等离子体金纳米粒子,在 420-730nm 的光谱范围内显示出平均 187%的宽带增强 EQE,在 520nm 波长下,最大 EQE 达到 847%,功率为 5nW。通过多物理场模拟进一步研究了宽带增强,并讨论了石墨烯中的载流子倍增,这是我们反向偏置光电二极管的 EQE 超过 100%的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验