Suppr超能文献

基于机器学习的因果模型,用于预测个体患者对地塞米松预防止吐治疗的反应。

Machine learning-based causal models for predicting the response of individual patients to dexamethasone treatment as prophylactic antiemetic.

机构信息

Department of Anesthesia, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan.

出版信息

Sci Rep. 2023 May 9;13(1):7549. doi: 10.1038/s41598-023-34505-0.

Abstract

Risk-based strategies are widely used for decision making in the prophylaxis of postoperative nausea and vomiting (PONV), a major complication of general anesthesia. However, whether risk is associated with individual treatment effect remains uncertain. Here, we used machine learning-based algorithms for estimating the conditional average treatment effect (CATE) (double machine learning [DML], doubly robust [DR] learner, forest DML, and generalized random forest) to predict the treatment response heterogeneity of dexamethasone, the first choice for prophylactic antiemetics. Electronic health record data of 2026 adult patients who underwent general anesthesia from January to June 2020 were analyzed. The results indicated that only a small subset of patients respond to dexamethasone treatment, and many patients may be non-responders. Estimated CATE did not correlate with predicted risk, suggesting that risk may not be associated with individual treatment responses. The current study suggests that predicting treatment responders by CATE models may be more appropriate for clinical decision making than conventional risk-based strategy.

摘要

风险策略被广泛应用于预防术后恶心和呕吐(PONV)的决策中,PONV 是全身麻醉的主要并发症。然而,风险是否与个体治疗效果相关仍不确定。在这里,我们使用基于机器学习的算法来估计条件平均治疗效果(CATE)(双重机器学习[DML]、双稳健[DR]学习者、森林 DML 和广义随机森林),以预测地塞米松的治疗反应异质性,地塞米松是预防止吐药的首选。分析了 2020 年 1 月至 6 月期间接受全身麻醉的 2026 名成年患者的电子健康记录数据。结果表明,只有一小部分患者对地塞米松治疗有反应,许多患者可能没有反应。估计的 CATE 与预测的风险没有相关性,这表明风险可能与个体治疗反应无关。本研究表明,通过 CATE 模型预测治疗反应者可能比传统的基于风险的策略更适合临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72aa/10169788/52ce11c4736d/41598_2023_34505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验