Johns Hopkins University, Departments of Psychological and Brain Sciences, Neuroscience and Mechanical Engineering, 3400 N. Charles St., Baltimore, MD 21218, USA.
Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
J Exp Biol. 2023 May 1;226(9). doi: 10.1242/jeb.245450. Epub 2023 May 10.
Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
实验生物学杂志长期以来一直报告关于动物回声定位的研究发现,这是百年综述的主题。回声定位动物发出强烈的声音脉冲,并处理回波以在动态声景中定位物体。蝙蝠中有超过 1100 种,齿鲸中有 70 种,它们分别依靠回声定位在空气和水中活动。减少声音混杂和环境噪声的需求在空气和水中的回声定位动物中都很常见,导致许多回声定位特征趋同,例如定向声音发射和听觉,以及在目标接近时脉冲间隔和声音强度降低。空气和水下的声音传输物理特性限制了声纳信号的产生、检测和定位,导致空气和水中的回声定位动物启动捕食拦截的响应时间存在差异。被回声定位动物追捕的猎物的反捕食行为反应会影响空气和水下的觅食行为策略。例如,许多昆虫猎物可以检测到并对蝙蝠回声定位声音做出反应,而大多数鱼类和鱿鱼对齿鲸信号没有反应,但可以感知到接近的捕食者产生的水运动。这些差异对蝙蝠和齿鲸如何使用回声定位进行捕猎有影响。在这里,我们考虑回声定位哺乳动物使用的行为来 (1) 跟踪和拦截配备有捕食者探测器的移动猎物,(2) 询问动态声场景,以及 (3) 利用视觉和被动声刺激。水下和空气中动物声纳行为的相似性和差异指出了一些有待探索的开放性研究问题。