Suppr超能文献

用于 Graves 眼病患者 CT 图像中眼眶组织分割的有效编解码器神经网络。

Effective encoder-decoder neural network for segmentation of orbital tissue in computed tomography images of Graves' orbitopathy patients.

机构信息

Department of Ophthalmology, Chung-Ang University College of Medicine, Chung-Ang University Hospital, Seoul, Korea.

Department of Artificial Intelligence, Chung-Ang University, Seoul, Korea.

出版信息

PLoS One. 2023 May 10;18(5):e0285488. doi: 10.1371/journal.pone.0285488. eCollection 2023.

Abstract

PURPOSE

To propose a neural network (NN) that can effectively segment orbital tissue in computed tomography (CT) images of Graves' orbitopathy (GO) patients.

METHODS

We analyzed orbital CT scans from 701 GO patients diagnosed between 2010 and 2019 and devised an effective NN specializing in semantic orbital tissue segmentation in GO patients' CT images. After four conventional (Attention U-Net, DeepLab V3+, SegNet, and HarDNet-MSEG) and the proposed NN train the various manual orbital tissue segmentations, we calculated the Dice coefficient and Intersection over Union for comparison.

RESULTS

CT images of the eyeball, four rectus muscles, the optic nerve, and the lacrimal gland tissues from all 701 patients were analyzed in this study. In the axial image with the largest eyeball area, the proposed NN achieved the best performance, with Dice coefficients of 98.2% for the eyeball, 94.1% for the optic nerve, 93.0% for the medial rectus muscle, and 91.1% for the lateral rectus muscle. The proposed NN also gave the best performance for the coronal image. Our qualitative analysis demonstrated that the proposed NN outputs provided more sophisticated orbital tissue segmentations for GO patients than the conventional NNs.

CONCLUSION

We concluded that our proposed NN exhibited an improved CT image segmentation for GO patients over conventional NNs designed for semantic segmentation tasks.

摘要

目的

提出一种能够有效分割格雷夫斯眼病(GO)患者计算机断层扫描(CT)图像中眼眶组织的神经网络(NN)。

方法

我们分析了 2010 年至 2019 年间诊断的 701 例 GO 患者的眼眶 CT 扫描,并设计了一种专门针对 GO 患者 CT 图像中语义眼眶组织分割的有效 NN。在对四种传统的(Attention U-Net、DeepLab V3+、SegNet 和 HarDNet-MSEG)和提出的 NN 进行训练后,对各种手动眼眶组织分割进行了计算,以比较 Dice 系数和交并比。

结果

本研究分析了 701 例患者的所有 CT 图像的眼球、四条直肌、视神经和泪腺组织。在眼球面积最大的轴向图像中,所提出的 NN 取得了最佳性能,眼球的 Dice 系数为 98.2%,视神经为 94.1%,内直肌为 93.0%,外直肌为 91.1%。所提出的 NN 对冠状图像也给出了最佳性能。我们的定性分析表明,与用于语义分割任务的传统神经网络相比,所提出的 NN 为 GO 患者提供了更精细的眼眶组织分割。

结论

我们得出结论,与用于语义分割任务的传统神经网络相比,所提出的 NN 对 GO 患者的 CT 图像分割表现出了改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f22/10171592/11c4aa8883f6/pone.0285488.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验