Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
Nat Commun. 2023 May 11;14(1):2701. doi: 10.1038/s41467-023-38266-2.
Decades ago, it was shown that proteins binding to DNA can quantitatively alter the formation of DNA damage by UV light. This established the principle of UV footprinting for non-intrusive study of protein-DNA contacts in living cells, albeit at limited scale and precision. Here, we perform deep base-resolution quantification of the principal UV damage lesion, the cyclobutane pyrimidine dimer (CPD), at select human promoter regions using targeted CPD sequencing. Several transcription factors exhibited distinctive and repeatable damage signatures indicative of site occupancy, involving strong (up to 17-fold) position-specific elevations and reductions in CPD formation frequency relative to naked DNA. Positive damage modulation at some ETS transcription factor binding sites coincided at base level with melanoma somatic mutation hotspots. Our work provides proof of concept for the study of protein-DNA interactions at individual loci using light and sequencing, and reveals widespread and potent modulation of UV damage in regulatory regions.
几十年前,人们已经证实,与 DNA 结合的蛋白质可以定量改变紫外线引起的 DNA 损伤的形成。这一发现确立了 UV 足迹法的原理,用于在活细胞中进行非侵入性的蛋白质-DNA 接触研究,尽管其规模和精度有限。在这里,我们使用靶向 CPD 测序,在选择的人类启动子区域进行深基分辨率的主要紫外线损伤病变,即环丁烷嘧啶二聚体(CPD)的定量分析。几个转录因子表现出独特且可重复的损伤特征,表明其占据特定位置,涉及相对于裸 DNA 的 CPD 形成频率的强烈(高达 17 倍)位置特异性升高和降低。一些 ETS 转录因子结合位点的阳性损伤调节在碱基水平上与黑色素瘤体细胞突变热点相吻合。我们的工作为使用光和测序研究个别基因座上的蛋白质-DNA 相互作用提供了概念验证,并揭示了在调控区域中广泛存在且有效的紫外线损伤调节。