Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, ON, M5S 3G4, Canada.
Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210 023, China.
Adv Mater. 2023 Jul;35(28):e2301842. doi: 10.1002/adma.202301842. Epub 2023 May 28.
III-V colloidal quantum dots (CQDs) are promising materials for optoelectronic applications, for they avoid heavy metals while achieving absorption spanning the visible to the infrared (IR). However, the covalent nature of III-V CQDs requires the development of new passivation strategies to fabricate conductive CQD solids for optoelectronics: this work shows herein that ligand exchanges, previously developed in II-VI and IV-VI quantum dots and employing a single ligand, do not fully passivate CQDs, and that this curtails device efficiency. Guided by density functional theory (DFT) simulations, this work develops a co-passivation strategy to fabricate indium arsenide CQD photodetectors, an approach that employs the combination of X-type methyl ammonium acetate (MaAc) and Z-type ligands InBr . This approach maintains charge carrier mobility and improves passivation, seen in a 25% decrease in Stokes shift, a fourfold reduction in the rate of first-exciton absorption linewidth broadening over time-under-stress, and leads to a doubling in photoluminescence (PL) lifetime. The resulting devices show 37% external quantum efficiency (EQE) at 950 nm, the highest value reported for InAs CQD photodetectors.
III-V 胶体量子点 (CQD) 是光电应用中很有前途的材料,因为它们避免了重金属,同时实现了从可见光到红外线 (IR) 的吸收。然而,III-V CQD 的共价性质要求开发新的钝化策略来制造用于光电的导电 CQD 固体:本工作表明,以前在 II-VI 和 IV-VI 量子点中开发的并采用单一配体的配体交换不能完全钝化 CQD,并限制了器件效率。本工作受密度泛函理论 (DFT) 模拟的指导,开发了一种共钝化策略来制造砷化铟 CQD 光电探测器,该方法采用 X 型甲基铵乙酸盐 (MaAc) 和 Z 型配体 InBr 的组合。这种方法保持了载流子迁移率并改善了钝化效果,Stokes 位移降低了 25%,在应力下的第一激子吸收线宽展宽率降低了四倍,光致发光 (PL) 寿命增加了一倍。所得器件在 950nm 处表现出 37%的外量子效率 (EQE),这是报道的最高值砷化铟 CQD 光电探测器。