Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany.
Chem Soc Rev. 2023 Jun 6;52(11):3599-3626. doi: 10.1039/d3cs00037k.
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[F]-fluoro-D-glucose (2-[F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
碳水化合物的多样性是调控细胞功能和通讯的分子基础。因此,阐明和利用这种结构-功能相互作用,一直是开发用于生物医学诊断的候选物的核心研究目标。一个典型的例子是 2-脱氧-2-[F]-氟-D-葡萄糖(2-[F]-FDG)作为正电子发射断层扫描(PET)的放射性示踪剂的普遍性,在 PET 中利用代谢捕获。在此临床成功的基础上,具有独特选择性的更复杂的糖在分子识别和个性化医疗方面正获得发展势头:这反映了在更广泛的意义上,碳水化合物特异性靶向所提供的机会。在本综述中,描述了用于 PET 的 2-[F]-FDG 及相关聚糖放射性示踪剂的发展中的关键里程碑及其诊断功能,以帮助人们在这个快速发展的跨学科研究领域中进行导航。