Suppr超能文献

基于MRI的影像组学模型预测子宫内膜癌患者复发风险的开发与验证:一项多中心研究

Development and validation of MRI-based radiomics model to predict recurrence risk in patients with endometrial cancer: a multicenter study.

作者信息

Lin Zijing, Wang Ting, Li Qiong, Bi Qiu, Wang Yaoxin, Luo Yingwei, Feng Feng, Xiao Meiling, Gu Yajia, Qiang Jinwei, Li Haiming

机构信息

Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.

出版信息

Eur Radiol. 2023 Aug;33(8):5814-5824. doi: 10.1007/s00330-023-09685-y. Epub 2023 May 12.

Abstract

OBJECTIVES

To develop a fusion model based on clinicopathological factors and MRI radiomics features for the prediction of recurrence risk in patients with endometrial cancer (EC).

METHODS

A total of 421 patients with histopathologically proved EC (101 recurrence vs. 320 non-recurrence EC) from four medical centers were included in this retrospective study, and were divided into the training (n = 235), internal validation (n = 102), and external validation (n = 84) cohorts. In total, 1702 radiomics features were respectively extracted from areas with different extensions for each patient. The extreme gradient boosting (XGBoost) classifier was applied to establish the clinicopathological model (CM), radiomics model (RM), and fusion model (FM). The performance of the established models was assessed by the discrimination, calibration, and clinical utility. Kaplan-Meier analysis was conducted to further determine the prognostic value of the models by evaluating the differences in recurrence-free survival (RFS) between the high- and low-risk patients of recurrence.

RESULTS

The FMs showed better performance compared with the models based on clinicopathological or radiomics features alone but with a reduced tendency when the peritumoral area (PA) was extended. The FM based on intratumoral area (IA) [FM (IA)] had the optimal performance in predicting the recurrence risk in terms of the ROC, calibration curve, and decision curve analysis. Kaplan-Meier survival curves showed that high-risk patients of recurrence defined by FM (IA) had a worse RFS than low-risk ones of recurrence.

CONCLUSIONS

The FM integrating intratumoral radiomics features and clinicopathological factors could be a valuable predictor for the recurrence risk of EC patients.

CLINICAL RELEVANCE STATEMENT

An accurate prediction based on our developed FM (IA) for the recurrence risk of EC could facilitate making an individualized therapeutic decision and help avoid under- or over-treatment, therefore improving the prognosis of patients.

KEY POINTS

• The fusion model combined clinicopathological factors and radiomics features exhibits the highest performance compared with the clinicopathological model and radiomics model. • Although higher values of area under the curve were observed for all fusion models, the performance tended to decrease with the extension of the peritumoral region. • Identifying patients with different risks of recurrence, the developed models can be used to facilitate individualized management.

摘要

目的

建立一种基于临床病理因素和MRI影像组学特征的融合模型,用于预测子宫内膜癌(EC)患者的复发风险。

方法

本回顾性研究纳入了来自四个医疗中心的421例经组织病理学证实的EC患者(101例复发EC与320例未复发EC),并将其分为训练组(n = 235)、内部验证组(n = 102)和外部验证组(n = 84)。总共从每位患者不同范围的区域分别提取了1702个影像组学特征。应用极端梯度提升(XGBoost)分类器建立临床病理模型(CM)、影像组学模型(RM)和融合模型(FM)。通过区分度、校准度和临床实用性评估所建立模型的性能。进行Kaplan-Meier分析,通过评估复发高风险和低风险患者无复发生存期(RFS)的差异,进一步确定模型的预后价值。

结果

与仅基于临床病理或影像组学特征的模型相比,融合模型表现出更好的性能,但当肿瘤周围区域(PA)扩大时性能有降低趋势。基于肿瘤内区域(IA)的融合模型[FM(IA)]在通过受试者工作特征曲线(ROC)、校准曲线和决策曲线分析预测复发风险方面具有最佳性能。Kaplan-Meier生存曲线显示,由FM(IA)定义的复发高风险患者的RFS比复发低风险患者更差。

结论

整合肿瘤内影像组学特征和临床病理因素的融合模型可能是EC患者复发风险的有价值预测指标。

临床相关性声明

基于我们开发的FM(IA)对EC复发风险进行准确预测,有助于做出个体化治疗决策,并有助于避免治疗不足或过度治疗,从而改善患者预后。

关键点

• 与临床病理模型和影像组学模型相比,结合临床病理因素和影像组学特征的融合模型表现出最高性能。• 尽管所有融合模型的曲线下面积值较高,但随着肿瘤周围区域的扩大,性能趋于下降。• 通过识别具有不同复发风险的患者,所开发的模型可用于促进个体化管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验