Suppr超能文献

掺铟/镓硅作为抑制自腐蚀和表面钝化的硅空气电池阳极:第一性原理研究。

In/Ga-Doped Si as Anodes for Si-Air Batteries with Restrained Self-Corrosion and Surface Passivation: A First-Principles Study.

机构信息

College of Physics Science and Technology, Kunming University, Kunming 650214, China.

出版信息

Molecules. 2023 Apr 27;28(9):3784. doi: 10.3390/molecules28093784.

Abstract

Silicon-air batteries (SABs) are attracting considerable attention owing to their high theoretical energy density and superior security. In this study, In and Ga were doped into Si electrodes to optimize the capability of Si-air batteries. Varieties of Si-In/SiO and Si-Ga/SiO atomic interfaces were built, and their properties were analyzed using density functional theory (DFT). The adsorption energies of the SiO passivation layer on In- and Ga-doped silicon electrodes were higher than those on pure Si electrodes. Mulliken population analysis revealed a change in the average number of charge transfers of oxygen atoms at the interface. Furthermore, the local device density of states (LDDOS) of the modified electrodes showed high strength in the interfacial region. Additionally, In and Ga as dopants introduced new energy levels in the Si/SiO interface according to the projected local density of states (PLDOS), thus reducing the band gap of the SiO. Moreover, the I-V curves revealed that doping In and Ga into Si electrodes enhanced the current flow of interface devices. These findings provide a mechanistic explanation for improving the practical efficiency of silicon-air batteries through anode doping and provide insight into the design of Si-based anodes in air batteries.

摘要

硅-空气电池(SAB)由于其高理论能量密度和优异的安全性而引起了相当大的关注。在这项研究中,将 In 和 Ga 掺杂到 Si 电极中,以优化 Si-空气电池的性能。构建了各种 Si-In/SiO 和 Si-Ga/SiO 原子界面,并使用密度泛函理论(DFT)对其性能进行了分析。SiO 钝化层在掺 In 和 Ga 的硅电极上的吸附能高于在纯 Si 电极上的吸附能。Mulliken 电荷转移分析表明,界面处氧原子的平均电荷转移数发生了变化。此外,修饰电极的局部态密度(LDDOS)在界面区域显示出高强度。此外,根据投影局域态密度(PLDOS),In 和 Ga 作为掺杂剂在 Si/SiO 界面引入了新的能级,从而降低了 SiO 的能带隙。此外,I-V 曲线表明,将 In 和 Ga 掺杂到 Si 电极中增强了界面器件的电流流动。这些发现为通过阳极掺杂提高硅-空气电池的实际效率提供了机制解释,并为空气电池中 Si 基阳极的设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ec/10180196/846f6f92d0de/molecules-28-03784-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验