Graduate Program in Electrical and Computer Engineering (PPgEEC), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.
Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba 59280-000, Brazil.
Sensors (Basel). 2023 Apr 26;23(9):4277. doi: 10.3390/s23094277.
Electroencephalography (EEG) is a fundamental tool for understanding the brain's electrical activity related to human motor activities. Brain-Computer Interface (BCI) uses such electrical activity to develop assistive technologies, especially those directed at people with physical disabilities. However, extracting signal features and patterns is still complex, sometimes delegated to machine learning (ML) algorithms. Therefore, this work aims to develop a ML based on the Random Forest algorithm to classify EEG signals from subjects performing real and imagery motor activities. The interpretation and correct classification of EEG signals allow the development of tools controlled by cognitive processes. We evaluated our ML Random Forest algorithm using a consumer and a research-grade EEG system. Random Forest efficiently distinguishes imagery and real activities and defines the related body part, even with consumer-grade EEG. However, interpersonal variability of the EEG signals negatively affects the classification process.
脑电图(EEG)是理解与人类运动活动相关的大脑电活动的基本工具。脑机接口(BCI)利用这种电活动来开发辅助技术,特别是针对身体残疾人士的技术。然而,提取信号特征和模式仍然很复杂,有时需要委托给机器学习(ML)算法。因此,这项工作旨在开发一种基于随机森林算法的 ML,以对执行真实和想象运动活动的受试者的 EEG 信号进行分类。对 EEG 信号的解释和正确分类可以开发由认知过程控制的工具。我们使用消费级和研究级 EEG 系统来评估我们的 ML 随机森林算法。随机森林可以有效地区分想象和真实活动,并定义相关的身体部位,即使使用消费级 EEG 也是如此。然而,EEG 信号的人际可变性会对分类过程产生负面影响。