Suppr超能文献

FA-Net:一种融合特征的多头注意力重编码网络,用于基于视觉 RGB 图像深度和浅层特征的梨叶片营养缺失诊断。

FA-Net: A Fused Feature for Multi-Head Attention Recoding Network for Pear Leaf Nutritional Deficiency Diagnosis with Visual RGB-Image Depth and Shallow Features.

机构信息

College of Information and Computer Science, Anhui Agricultural University, Hefei 230001, China.

College of Horticulture, Anhui Agricultural University, Hefei 230001, China.

出版信息

Sensors (Basel). 2023 May 5;23(9):4507. doi: 10.3390/s23094507.

Abstract

Accurate diagnosis of pear tree nutrient deficiency symptoms is vital for the timely adoption of fertilization and treatment. This study proposes a novel method on the fused feature multi-head attention recording network with image depth and shallow feature fusion for diagnosing nutrient deficiency symptoms in pear leaves. First, the shallow features of nutrient-deficient pear leaf images are extracted using manual feature extraction methods, and the depth features are extracted by the deep network model. Second, the shallow features are fused with the depth features using serial fusion. In addition, the fused features are trained using three classification algorithms, F-Net, FC-Net, and FA-Net, proposed in this paper. Finally, we compare the performance of single feature-based and fusion feature-based identification algorithms in the nutrient-deficient pear leaf diagnostic task. The best classification performance is achieved by fusing the depth features output from the ConvNeXt-Base deep network model with shallow features using the proposed FA-Net network, which improved the average accuracy by 15.34 and 10.19 percentage points, respectively, compared with the original ConvNeXt-Base model and the shallow feature-based recognition model. The result can accurately recognize pear leaf deficiency images by providing a theoretical foundation for identifying plant nutrient-deficient leaves.

摘要

准确诊断梨树营养缺乏症状对于及时采取施肥和治疗至关重要。本研究提出了一种新颖的方法,即融合特征多头注意力记录网络与图像深度和浅层特征融合,用于诊断梨树叶片的营养缺乏症状。首先,使用手动特征提取方法提取营养缺乏梨叶图像的浅层特征,并使用深度网络模型提取深度特征。其次,使用串行融合将浅层特征与深度特征融合。此外,使用本文提出的 F-Net、FC-Net 和 FA-Net 三种分类算法对融合特征进行训练。最后,我们比较了基于单特征和融合特征的识别算法在营养缺乏梨叶诊断任务中的性能。通过使用提出的 FA-Net 网络融合 ConvNeXt-Base 深度网络模型输出的深度特征和浅层特征,实现了最佳的分类性能,与原始 ConvNeXt-Base 模型和基于浅层特征的识别模型相比,平均准确率分别提高了 15.34 和 10.19 个百分点。该结果可以通过提供识别植物营养缺乏叶片的理论基础,准确地识别梨树叶片缺乏图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fbb/10181525/7eabb6443374/sensors-23-04507-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验