Suppr超能文献

人工智能辅助数字工作流程中组织切片乳腺癌淋巴结转移的诊断。

Artificial Intelligence-Aided Diagnosis of Breast Cancer Lymph Node Metastasis on Histologic Slides in a Digital Workflow.

机构信息

Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.

Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio.

出版信息

Mod Pathol. 2023 Aug;36(8):100216. doi: 10.1016/j.modpat.2023.100216. Epub 2023 May 12.

Abstract

Identifying lymph node (LN) metastasis in invasive breast carcinoma can be tedious and time-consuming. We investigated an artificial intelligence (AI) algorithm to detect LN metastasis by screening hematoxylin and eosin (H&E) slides in a clinical digital workflow. The study included 2 sentinel LN (SLN) cohorts (a validation cohort with 234 SLNs and a consensus cohort with 102 SLNs) and 1 nonsentinel LN cohort (258 LNs enriched with lobular carcinoma and postneoadjuvant therapy cases). All H&E slides were scanned into whole slide images in a clinical digital workflow, and whole slide images were automatically batch-analyzed using the Visiopharm Integrator System (VIS) metastasis AI algorithm. For the SLN validation cohort, the VIS metastasis AI algorithm detected all 46 metastases, including 19 macrometastases, 26 micrometastases, and 1 with isolated tumor cells with a sensitivity of 100%, specificity of 41.5%, positive predictive value of 29.5%, and negative predictive value (NPV) of 100%. The false positivity was caused by histiocytes (52.7%), crushed lymphocytes (18.2%), and others (29.1%), which were readily recognized during pathologists' reviews. For the SLN consensus cohort, 3 pathologists examined all VIS AI annotated H&E slides and cytokeratin immunohistochemistry slides with similar average concordance rates (99% for both modalities). However, the average time consumed by pathologists using VIS AI annotated slides was significantly less than using immunohistochemistry slides (0.6 vs 1.0 minutes, P = .0377). For the nonsentinel LN cohort, the AI algorithm detected all 81 metastases, including 23 from lobular carcinoma and 31 from postneoadjuvant chemotherapy cases, with a sensitivity of 100%, specificity of 78.5%, positive predictive value of 68.1%, and NPV of 100%. The VIS AI algorithm showed perfect sensitivity and NPV in detecting LN metastasis and less time consumed, suggesting its potential utility as a screening modality in routine clinical digital pathology workflow to improve efficiency.

摘要

在浸润性乳腺癌中检测淋巴结(LN)转移可能既繁琐又耗时。我们研究了一种人工智能(AI)算法,通过在临床数字工作流程中筛选苏木精和伊红(H&E)切片来检测 LN 转移。该研究包括 2 个前哨淋巴结(SLN)队列(一个验证队列,有 234 个 SLN;一个共识队列,有 102 个 SLN)和 1 个非前哨淋巴结队列(258 个富含小叶癌和新辅助治疗病例的 LN)。所有 H&E 切片均在临床数字工作流程中扫描为全切片图像,然后使用 Visiopharm Integrator System(VIS)转移 AI 算法自动批量分析全切片图像。对于 SLN 验证队列,VIS 转移 AI 算法检测到所有 46 个转移灶,包括 19 个大转移灶、26 个微转移灶和 1 个孤立肿瘤细胞,其敏感性为 100%,特异性为 41.5%,阳性预测值为 29.5%,阴性预测值(NPV)为 100%。假阳性是由组织细胞(52.7%)、压碎的淋巴细胞(18.2%)和其他(29.1%)引起的,这些在病理学家审查期间很容易识别。对于 SLN 共识队列,3 名病理学家检查了所有 VIS AI 注释的 H&E 切片和细胞角蛋白免疫组化切片,两种方式的平均一致性率相似(均为 99%)。然而,病理学家使用 VIS AI 注释切片的平均时间明显少于使用免疫组化切片(0.6 分钟与 1.0 分钟,P=0.0377)。对于非前哨淋巴结队列,AI 算法检测到所有 81 个转移灶,包括 23 个来自小叶癌和 31 个来自新辅助化疗病例,其敏感性为 100%,特异性为 78.5%,阳性预测值为 68.1%,NPV 为 100%。VIS AI 算法在检测 LN 转移方面表现出完美的敏感性和 NPV,且消耗的时间更少,这表明其作为常规临床数字病理学工作流程中一种筛查方法具有潜在的应用价值,可提高效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验