Duan Ying, Song Xuemei, Guan Ling, Wang Weili, Song Bo, Kang Yaqiong, Jia Yingying, Zhu Yangyang, Nie Fang
Department of Ultrasound, Lanzhou University Second Hospital, Lanzhou, China.
Department of Ultrasound, Gansu Cancer Hospital, Lanzhou, China.
Quant Imaging Med Surg. 2023 May 1;13(5):3013-3028. doi: 10.21037/qims-22-910. Epub 2023 Mar 31.
This study created a predictive preoperative nomogram dependent on multimodal ultrasound characteristics and primary lesion biopsy results for various pathologic response assessment systems following neoadjuvant chemotherapy (NAC).
This retrospective study included 145 breast cancer patients treated at Gansu Cancer Hospital between January 2021 and June 2022 who underwent shear wave elastography (SWE) prior to completing NAC. Intra- and peritumoral SWE features, including maximum (E), mean (E), minimum (E), and standard deviation (E) elasticity, were measured individually and linked with the Miller-Payne grading system and residual cancer burden (RCB) class. Univariate analysis was used for conventional ultrasound and puncture pathology. Binary logistic regression analysis was used to screen for independent risk factors and to develop a prediction model.
Intratumor E and peritumoral E differed significantly from the Miller-Payne grade [intratumor E: r=0.129, 95% confidence interval (CI): -0.002 to 0.260; P=0.042; peritumoral E: r=0.126, 95% CI: -0.010 to 0.254; P=0.047], RCB class (intratumor E: r=-0.184, 95% CI: -0.318 to -0.047; P=0.004; peritumoral E: r=-0.139, 95% CI: -0.265 to 0.000; P=0.029) and RCB score components (r=-0.277 to -0.139; P=0.001-0.041). Two prediction model nomograms-pathologic complete response (pCR)/non-pCR and good responder/nonresponder-for the RCB class were developed using binary logistic regression analysis for all significant variables in SWE, conventional ultrasound, and puncture results. The area under the receiver operating characteristic curve for the pCR/non-pCR and good responder/nonresponder models was 0.855 (95% CI: 0.787-0.922) and 0.845 (95% CI: 0.780-0.910), respectively. According to the calibration curve, the nomogram had excellent internal consistency between estimated and actual values.
The preoperative nomogram can effectively guide clinicians to predict pathological response of breast cancer after NAC and has the potential to guide individualized treatment.
本研究创建了一个术前预测列线图,该列线图依赖于多模态超声特征和原发性病变活检结果,用于新辅助化疗(NAC)后各种病理反应评估系统。
这项回顾性研究纳入了2021年1月至2022年6月在甘肃省肿瘤医院接受治疗的145例乳腺癌患者,这些患者在完成NAC之前接受了剪切波弹性成像(SWE)检查。分别测量瘤内和瘤周的SWE特征,包括最大弹性(E)、平均弹性(E)、最小弹性(E)和弹性标准差(E),并将其与米勒-佩恩分级系统和残余癌负担(RCB)类别相关联。对传统超声和穿刺病理进行单因素分析。采用二元逻辑回归分析筛选独立危险因素并建立预测模型。
瘤内E和瘤周E与米勒-佩恩分级[瘤内E:r = 0.129,95%置信区间(CI):-0.002至0.260;P = 0.042;瘤周E:r = 0.126,95% CI:-0.010至0.254;P = 0.047]、RCB类别(瘤内E:r = -0.184,95% CI:-0.318至-0.047;P = 0.004;瘤周E:r = -0.139,95% CI:-0.265至0.000;P = 0.029)以及RCB评分成分(r = -0.277至-0.139;P = 0.001 - 0.041)存在显著差异。利用二元逻辑回归分析对SWE、传统超声和穿刺结果中的所有显著变量,开发了两个针对RCB类别的预测模型列线图——病理完全缓解(pCR)/非pCR和好反应者/无反应者。pCR/非pCR模型和好反应者/无反应者模型的受试者工作特征曲线下面积分别为0.855(95% CI:0.787 - 0.922)和0.845(95% CI:0.780 - 0.910)。根据校准曲线,列线图在估计值和实际值之间具有出色的内部一致性。
术前列线图可有效指导临床医生预测NAC后乳腺癌的病理反应,并有可能指导个体化治疗。