Suppr超能文献

基于炭黑/多层石墨烯/羧甲基纤维素复合材料的防水、超灵敏纸质可穿戴应变/压力传感器。

Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite.

机构信息

Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.

Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

出版信息

Carbohydr Polym. 2023 Aug 1;313:120898. doi: 10.1016/j.carbpol.2023.120898. Epub 2023 Apr 14.

Abstract

Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.

摘要

大量的电子废物推动了可生物降解的导电纤维素纸基功能材料作为柔性可穿戴设备的蓬勃发展。然而,相对较低的灵敏度和不稳定的输出,再加上在高湿度环境下较差的湿强度,阻碍了其实际应用。在此,创新性地采用离子型羧甲基纤维素钠(CMC)作为桥接物来增强碳黑(CB)和多层石墨烯(MG)与 SiO2 纳米粒子之间的界面相互作用,制备了具有超高灵敏度的超疏水纤维素纸。所得的基于纸张的(PB)传感器表现出优异的应变传感性能,宽工作范围(-1.0%~1.0%),超高灵敏度(应变系数,GF=70.2)和令人满意的耐用性(>10,000 次循环)。此外,超疏水表面提供了良好的防水和自清洁性能,即使在极高湿度条件下未封装,也能稳定运行数据。令人印象深刻的是,当将所制备的 PB 传感器应用于电子皮肤(E-skin)时,轻松实现了对人体运动时 E-skin 空间应变的信号采集。因此,我们的工作不仅为增强导电碳质材料的界面相互作用提供了新途径,而且还为超敏感性纤维素基应变传感器提供了一类前所未有的超疏水材料,有望在人机界面领域得到广泛应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验