Leibniz-IFW Dresden, Helmholtzstr. 20, 01069 Dresden, Germany.
Department of Mechanical and Aerospace Engineering Monash University, Clayton, Victoria 3800, Australia.
ACS Appl Mater Interfaces. 2023 May 24;15(20):24023-24033. doi: 10.1021/acsami.3c00537. Epub 2023 May 15.
Precise manipulation of (sub)micron particles is key for the preparation, enrichment, and quality control in many biomedical applications. Surface acoustic waves (SAW) hold tremendous promise for manipulation of (bio)particles at the micron to nanoscale ranges. In commonly used SAW tweezers, particle manipulation relies on the direct acoustic radiation effect whose superior performance fades rapidly when progressing from micron to nanoscale particles due to the increasing dominance of a second order mechanism, termed acoustic streaming. Through reproducible and high-precision realization of stiff microchannels to reliably actuate the microchannel cross-section, here we introduce an approach that allows the otherwise competing acoustic streaming to complement the acoustic radiation effect. The synergetic effect of both mechanisms markedly enhances the manipulation of nanoparticles, down to 200 nm particles, even at relatively large wavelength (300 μm). Besides spherical particles ranging from 0.1 to 3 μm, we show collections of cells mixed with different sizes and shapes inherently existing in blood including erythrocytes, leukocytes, and thrombocytes.
对(亚)微米颗粒进行精确操作是许多生物医学应用中制备、富集和质量控制的关键。表面声波(SAW)在微米到纳米范围内对(生物)颗粒的操纵具有巨大的潜力。在常用的 SAW 镊子中,颗粒操纵依赖于直接声辐射效应,由于第二种机制,即所谓的声流的主导地位不断增加,该效应在从微米到纳米颗粒的过程中性能迅速下降。通过可重复且高精度地实现刚性微通道,以可靠地驱动微通道横截面,我们在这里引入了一种方法,该方法允许竞争的声流补充声辐射效应。两种机制的协同作用显著增强了对纳米颗粒的操纵能力,甚至在相对较大的波长(300μm)下也可以操纵 200nm 的颗粒。除了从 0.1 到 3μm 的球形颗粒外,我们还展示了血液中固有存在的不同大小和形状的细胞混合物,包括红细胞、白细胞和血小板。