Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
Department of Cardiology, Dong-A University Hospital, Busan, Korea.
Epidemiol Health. 2023;45:e2023052. doi: 10.4178/epih.e2023052. Epub 2023 May 12.
Proper risk assessment is important for the primary prevention of atherosclerotic cardiovascular disease (ASCVD). However, no validated risk prediction tools are currently in use in Korea. This study sought to develop a 10-year risk prediction model for incident ASCVD.
Using the National Sample Cohort of Korea, 325,934 subjects aged 20-80 years without previous ASCVD were enrolled. ASCVD was defined as a composite of cardiovascular death, myocardial infarction, and stroke. The Korean atherosclerotic cardiovas cular disease risk prediction (K-CVD) model was developed separately for men and women using the development dataset and validated in the validation dataset. Furthermore, the model performance was compared with the Framingham risk score (FRS) and pooled cohort equation (PCE).
Over 10 years of follow-up, 4,367 ASCVD events occurred in the overall population. The predictors of ASCVD included in the model were age, smoking status, diabetes, systolic blood pressure, lipid profiles, urine protein, and lipid-lowering and blood pressure-lowering treatment. The K-CVD model had good discrimination and strong calibration in the validation dataset (time-dependent area under the curve=0.846; 95% confidence interval, 0.828 to 0.864; calibration χ2=4.73, goodness-of-fit p=0.32). Compared with our model, both FRS and PCE showed worse calibration, overestimating ASCVD risk in the Korean population.
Through a nationwide cohort, we developed a model for 10-year ASCVD risk prediction in a contemporary Korean population. The K-CVD model showed excellent discrimination and calibration in Koreans. This population-based risk prediction tool would help to appropriately identify high-risk individuals and provide preventive interventions in the Korean population.
恰当的风险评估对于动脉粥样硬化性心血管疾病(ASCVD)的一级预防至关重要。然而,目前在韩国尚未使用经过验证的风险预测工具。本研究旨在建立一种用于预测 ASCVD 事件的 10 年风险预测模型。
利用韩国国家样本队列,纳入了 325934 名年龄在 20-80 岁且无 ASCVD 既往史的受试者。ASCVD 定义为心血管死亡、心肌梗死和卒中的复合事件。男性和女性的韩国动脉粥样硬化性心血管疾病风险预测(K-CVD)模型分别在开发数据集和验证数据集中进行开发和验证。此外,还比较了模型的性能与 Framingham 风险评分(FRS)和汇总队列方程(PCE)。
在 10 年的随访期间,共有 4367 例 ASCVD 事件发生在全人群中。纳入模型的 ASCVD 预测因素包括年龄、吸烟状况、糖尿病、收缩压、血脂谱、尿蛋白以及降脂和降压治疗。K-CVD 模型在验证数据集中具有良好的判别力和较强的校准度(时间依赖性曲线下面积=0.846;95%置信区间,0.828 至 0.864;校准 χ2=4.73,拟合优度 p=0.32)。与我们的模型相比,FRS 和 PCE 均显示出较差的校准度,高估了韩国人群的 ASCVD 风险。
通过一项全国性队列研究,我们在当代韩国人群中建立了一种用于预测 10 年 ASCVD 风险的模型。K-CVD 模型在韩国人群中具有出色的判别力和校准度。这种基于人群的风险预测工具将有助于在韩国人群中适当识别高危个体并提供预防干预措施。