Suppr超能文献

随机环境下具有饱和发生率和疫苗接种的 SVIS 传染病模型的静止分布和密度函数分析。

Stationary distribution and density function analysis of SVIS epidemic model with saturated incidence and vaccination under stochastic environments.

机构信息

Department of Mathematics, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India.

Deputy Secretary, West Bengal Board of Primary Education, Salt Lake City, Kolkata, 700091, West Bengal, India.

出版信息

Theory Biosci. 2023 Jun;142(2):181-198. doi: 10.1007/s12064-023-00392-2. Epub 2023 May 16.

Abstract

In this article, we study the dynamical properties of susceptible-vaccinated-infected-susceptible (SVIS) epidemic system with saturated incidence rate and vaccination strategies. By constructing the suitable Lyapunov function, we examine the existence and uniqueness of the stochastic system. With the help of Khas'minskii theory, we set up a critical value [Formula: see text] with respect to the basic reproduction number [Formula: see text] of the deterministic system. A unique ergodic stationary distribution is investigated under the condition of [Formula: see text]. In the epidemiological study, the ergodic stationary distribution represents that the disease will persist for long-term behavior. We focus for developing the general three-dimensional Fokker-Planck equation using appropriate solving theories. Around the quasi-endemic equilibrium, the probability density function of the stochastic system is analyzed which is the main theme of our study. Under [Formula: see text], both the existence of ergodic stationary distribution and density function can elicit all the dynamical behavior of the disease persistence. The condition of disease extinction of the system is derived. For supporting theoretical study, we discuss the numerical results and the sensitivities of the biological parameters. Results and conclusions are highlighted.

摘要

在本文中,我们研究了具有饱和发生率和接种策略的易感染-接种-感染-易感染(SVIS)传染病系统的动态特性。通过构建合适的李雅普诺夫函数,我们检验了随机系统的存在性和唯一性。借助 Khas'minskii 理论,我们针对确定性系统的基本再生数 [Formula: see text],建立了一个关于临界值 [Formula: see text]。在 [Formula: see text]的条件下,研究了唯一的遍历平稳分布。在流行病学研究中,遍历平稳分布表示疾病将持续长期行为。我们专注于使用适当的求解理论开发一般的三维福克-普朗克方程。在准地方病平衡点周围,分析了随机系统的概率密度函数,这是我们研究的主要主题。在 [Formula: see text]的情况下,遍历平稳分布和密度函数的存在可以得出疾病持续存在的所有动力学行为。推导出了系统疾病灭绝的条件。为了支持理论研究,我们讨论了数值结果和生物参数的敏感性。强调了结果和结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3439/10187527/59ccc1120495/12064_2023_392_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验