Suppr超能文献

利用外显子组测序数据识别癌症免疫治疗肿瘤特异性抗原的计算机分析流程

In Silico Pipeline to Identify Tumor-Specific Antigens for Cancer Immunotherapy Using Exome Sequencing Data.

作者信息

Morazán-Fernández Diego, Mora Javier, Molina-Mora Jose Arturo

机构信息

Caja Costarricense de Seguro Social, San José, 10104 Costa Rica.

Centro de Investigación de Enfermedades Tropicales, Centro de Investigación en Cirugía y Cáncer, and Facultad de Microbiología, Universidad de Costa Rica, San José, 2060 Costa Rica.

出版信息

Phenomics. 2022 Dec 8;3(2):130-137. doi: 10.1007/s43657-022-00084-9. eCollection 2023 Apr.

Abstract

UNLABELLED

Tumor-specific antigens or neoantigens are peptides that are expressed only in cancer cells and not in healthy cells. Some of these molecules can induce an immune response, and therefore, their use in immunotherapeutic strategies based on cancer vaccines has been extensively explored. Studies based on these approaches have been triggered by the current high-throughput DNA sequencing technologies. However, there is no universal nor straightforward bioinformatic protocol to discover neoantigens using DNA sequencing data. Thus, we propose a bioinformatic protocol to detect tumor-specific antigens associated with single nucleotide variants (SNVs) or "mutations" in tumoral tissues. For this purpose, we used publicly available data to build our model, including exome sequencing data from colorectal cancer and healthy cells obtained from a single case, as well as frequent human leukocyte antigen (HLA) class I alleles in a specific population. HLA data from Costa Rican Central Valley population was selected as an example. The strategy included three main steps: (1) pre-processing of sequencing data; (2) variant calling analysis to detect tumor-specific SNVs in comparison with healthy tissue; and (3) prediction and characterization of peptides (protein fragments, the tumor-specific antigens) derived from the variants, in the context of their affinity with frequent alleles of the selected population. In our model data, we found 28 non-silent SNVs, present in 17 genes in chromosome one. The protocol yielded 23 strong binders peptides derived from the SNVs for frequent HLA class I alleles for the Costa Rican population. Although the analyses were performed as an example to implement the pipeline, to our knowledge, this is the first study of an in silico cancer vaccine using DNA sequencing data in the context of the HLA alleles. It is concluded that the standardized protocol was not only able to identify neoantigens in a specific but also provides a complete pipeline for the eventual design of cancer vaccines using the best bioinformatic practices.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43657-022-00084-9.

摘要

未标记

肿瘤特异性抗原或新抗原是仅在癌细胞中表达而不在健康细胞中表达的肽。其中一些分子可诱导免疫反应,因此,它们在基于癌症疫苗的免疫治疗策略中的应用已得到广泛探索。基于这些方法的研究已由当前的高通量DNA测序技术引发。然而,目前尚无通用的、直接的生物信息学方案来利用DNA测序数据发现新抗原。因此,我们提出了一种生物信息学方案,用于检测与肿瘤组织中的单核苷酸变异(SNV)或“突变”相关的肿瘤特异性抗原。为此,我们使用公开可用的数据构建模型,包括来自一例结直肠癌的外显子组测序数据和健康细胞数据,以及特定人群中常见的人类白细胞抗原(HLA)I类等位基因。以来自哥斯达黎加中央山谷人群的HLA数据为例。该策略包括三个主要步骤:(1)测序数据的预处理;(2)与健康组织相比检测肿瘤特异性SNV的变异调用分析;(3)在所选人群常见等位基因亲和力的背景下,预测和表征源自变异的肽(蛋白质片段,即肿瘤特异性抗原)。在我们的模型数据中,我们在1号染色体的17个基因中发现了28个非同义SNV。该方案产生了23种源自SNV的强结合肽,针对哥斯达黎加人群常见的HLA I类等位基因。尽管这些分析是作为实施该流程的一个例子进行的,但据我们所知,这是首次在HLA等位基因背景下使用DNA测序数据进行的计算机模拟癌症疫苗研究。结论是,该标准化方案不仅能够在特定情况下识别新抗原,还提供了一个完整的流程,用于最终使用最佳生物信息学方法设计癌症疫苗。

补充信息

在线版本包含可在10.1007/s43657-022-00084-9获取的补充材料。

相似文献

1
In Silico Pipeline to Identify Tumor-Specific Antigens for Cancer Immunotherapy Using Exome Sequencing Data.
Phenomics. 2022 Dec 8;3(2):130-137. doi: 10.1007/s43657-022-00084-9. eCollection 2023 Apr.
3
Neoantigen-reactive T cells exhibit effective anti-tumor activity against colorectal cancer.
Hum Vaccin Immunother. 2022 Dec 31;18(1):1-11. doi: 10.1080/21645515.2021.1891814. Epub 2021 Mar 9.
6
NeoFuse: predicting fusion neoantigens from RNA sequencing data.
Bioinformatics. 2020 Apr 1;36(7):2260-2261. doi: 10.1093/bioinformatics/btz879.
8
pTuneos: prioritizing tumor neoantigens from next-generation sequencing data.
Genome Med. 2019 Oct 30;11(1):67. doi: 10.1186/s13073-019-0679-x.
9
Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis.
Lancet Oncol. 2017 Aug;18(8):1009-1021. doi: 10.1016/S1470-2045(17)30516-8. Epub 2017 Jul 7.
10
Neoantigens in Hematological Malignancies-Ultimate Targets for Immunotherapy?
Front Immunol. 2019 Dec 20;10:3004. doi: 10.3389/fimmu.2019.03004. eCollection 2019.

引用本文的文献

1
Molecular analysis of three DNA mismatch repair protein variants in Chinese families with suspected Lynch syndrome.
Front Med (Lausanne). 2025 Jul 29;12:1635964. doi: 10.3389/fmed.2025.1635964. eCollection 2025.
2
CS-6-induced p62 accumulation exacerbates DNA damage in colorectal cancer.
Front Pharmacol. 2025 May 9;16:1568339. doi: 10.3389/fphar.2025.1568339. eCollection 2025.
5
Bioinformatics-Based Construction of Immune-Related microRNA and mRNA Prognostic Models for Hepatocellular Carcinoma.
Cancer Manag Res. 2024 Dec 27;16:1793-1811. doi: 10.2147/CMAR.S482688. eCollection 2024.
6
mRNA vaccines as cancer therapies.
Chin Med J (Engl). 2024 Dec 20;137(24):2979-2995. doi: 10.1097/CM9.0000000000003455. Epub 2024 Dec 13.
7
Progress of research on γδ T cells in colorectal cancer (Review).
Oncol Rep. 2024 Dec;52(6). doi: 10.3892/or.2024.8819. Epub 2024 Oct 4.
8
Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits.
Front Immunol. 2024 Sep 19;15:1408474. doi: 10.3389/fimmu.2024.1408474. eCollection 2024.
9
induction of anti‑lung cancer immune response by the A549 lung cancer stem cell lysate‑sensitized dendritic cell vaccine.
Oncol Lett. 2024 Sep 13;28(5):550. doi: 10.3892/ol.2024.14683. eCollection 2024 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验