Instituto de Física e Ciencias Aeroespaciais (IFCAE), Universidade de Vigo, Campus de As Lagoas, 32004 Ourense, Spain.
Phys Rev E. 2023 Apr;107(4-1):044215. doi: 10.1103/PhysRevE.107.044215.
We consider a disk-shaped cold atom Bose-Einstein condensate with repulsive atom-atom interactions within a circular trap, described by a two-dimensional time-dependent Gross-Pitaevskii equation with cubic nonlinearity and a circular box potential. In this setup, we discuss the existence of a type of stationary nonlinear waves with propagation-invariant density profiles, consisting of vortices located at the vertices of a regular polygon with or without an antivortex at its center. These polygons rotate around the center of the system and we provide approximate expressions for their angular velocity. For any size of the trap, we find a unique regular polygon solution that is static and is seemingly stable for long evolutions. It consists of a triangle of vortices with unit charge placed around a singly charged antivortex, with the size of the triangle fixed by the cancellation of competing effects on its rotation. There exist other geometries with discrete rotational symmetry that yield static solutions, even if they turn out to be unstable. By numerically integrating in real time the Gross-Pitaevskii equation, we compute the evolution of the vortex structures and discuss their stability and the fate of the instabilities that can unravel the regular polygon configurations. Such instabilities can be driven by the instability of the vortices themselves, by vortex-antivortex annihilation or by the eventual breaking of the symmetry due to the motion of the vortices.
我们考虑了一个具有圆形陷阱的排斥原子间相互作用的盘状冷原子玻色-爱因斯坦凝聚体,该系统由带有立方非线性项和圆形盒势的二维时变 Gross-Pitaevskii 方程描述。在这种设置下,我们讨论了存在一类具有传播不变密度分布的定态非线性波,这些波由位于正多边形顶点处的涡旋组成,其中有些多边形中心还有一个反涡旋。这些多边形绕着系统中心旋转,我们给出了它们角速度的近似表达式。对于任意大小的陷阱,我们都找到了一个独特的静态正多边形解,该解在长时间演化中似乎是稳定的。它由一个三角形的涡旋组成,每个涡旋带有一个单位电荷,放置在一个带有单位电荷的反涡旋周围,三角形的大小由其旋转时相互竞争的效应的抵消来确定。存在其他具有离散旋转对称性的几何形状,它们可以产生静态解,即使这些解不稳定。通过实时数值积分 Gross-Pitaevskii 方程,我们计算了涡旋结构的演化,并讨论了它们的稳定性以及可能破坏正多边形构型的不稳定性的命运。这种不稳定性可能是由涡旋本身的不稳定性、涡旋-反涡旋湮灭或由于涡旋的运动最终打破对称性引起的。