Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany.
Phys Rev E. 2023 Apr;107(4-1):044106. doi: 10.1103/PhysRevE.107.044106.
Graham has shown [Z. Phys. B 26, 397 (1977)0340-224X10.1007/BF01570750] that a fluctuation-dissipation relation can be imposed on a class of nonequilibrium Markovian Langevin equations that admit a stationary solution of the corresponding Fokker-Planck equation. The resulting equilibrium form of the Langevin equation is associated with a nonequilibrium Hamiltonian. Here we provide some explicit insight into how this Hamiltonian may lose its time-reversal invariance and how the "reactive" and "dissipative" fluxes loose their distinct time-reversal symmetries. The antisymmetric coupling matrix between forces and fluxes no longer originates from Poisson brackets and the "reactive" fluxes contribute to the ("housekeeping") entropy production, in the steady state. The time-reversal even and odd parts of the nonequilibrium Hamiltonian contribute in qualitatively different but physically instructive ways to the entropy. We find instances where fluctuations due to noise are solely responsible for the dissipation. Finally, this structure gives rise to a new, physically pertinent instance of frenesy.
格雷厄姆已经证明 [Z. Phys. B 26, 397 (1977)0340-224X10.1007/BF01570750],一类具有平稳解的非平衡马尔可夫朗之万方程可以强加一个涨落耗散关系,相应的福克-普朗克方程。由此得到的朗之万方程的平衡形式与非平衡哈密顿量有关。在这里,我们提供了一些明确的见解,说明这个哈密顿量如何失去时间反演不变性,以及“反应”和“耗散”通量如何失去它们明显的时间反演对称性。力和通量之间的反对称耦合矩阵不再来源于泊松括号,并且在稳态下,“反应”通量对(“日常”)熵产生有贡献。非平衡哈密顿量的时间反演偶部和奇部以定性上不同但物理上有启发性的方式对熵做出贡献。我们发现有些情况下,由于噪声引起的涨落仅导致耗散。最后,这种结构导致了一种新的、物理上相关的狂热现象。