Department of Physics, Shahid Beheshti University, 1983969411 Tehran, Iran.
Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran.
Phys Rev E. 2023 Apr;107(4-1):044303. doi: 10.1103/PhysRevE.107.044303.
The centrality measures, like betweenness b and degree k in complex networks remain fundamental quantities helping to classify them. It is realized from Barthelemy's paper [Eur. Phys. J. B 38, 163 (2004)10.1140/epjb/e2004-00111-4] that the maximal b-k exponent for the scale-free (SF) networks is η_{max}=2, belonging to SF trees, based on which one concludes δ≥γ+1/2, where γ and δ are the scaling exponents for the distribution functions of the degree and the betweenness centralities, respectively. This conjecture was violated for some special models and systems. Here we present a systematic study on this problem for visibility graphs of correlated time series, and show evidence that this conjecture fails in some correlation strengths. We consider the visibility graph of three models: two-dimensional Bak-Tang-Weisenfeld (BTW) sandpile model, one-dimensional (1D) fractional Brownian motion (FBM), and 1D Levy walks, the two latter cases are controlled by the Hurst exponent H and the step index α, respectively. In particular, for the BTW model and FBM with H≲0.5, η is greater than 2, and also δ<γ+1/2 for the BTW model, while the Barthelemy's conjecture remains valid for the Levy process. We assert that the failure of the Barthelemy's conjecture is due to large fluctuations in the scaling b-k relation resulting in the violation of hyperscaling relation η=γ-1/δ-1 and emergent anomalous behavior for the BTW model and FBM. Universal distribution function of generalized degree is found for these models which have the same scaling behavior as the Barabasi-Albert network.
中心度测度,如复杂网络中的介数中心度 b 和度数中心度 k,仍然是帮助对其进行分类的基本数量。根据 Barthelemy 的论文[Eur. Phys. J. B 38, 163 (2004)10.1140/epjb/e2004-00111-4],无标度(SF)网络的最大 b-k 指数为 η_{max}=2,属于 SF 树,由此得出 δ≥γ+1/2,其中 γ 和 δ 分别是度数和介数中心度分布函数的标度指数。这个猜想被一些特殊模型和系统所违背。在这里,我们对相关时间序列的可见性图进行了系统的研究,并证明了在某些相关强度下这个猜想是不成立的。我们考虑了三种模型的可见性图:二维 Bak-Tang-Weisenfeld(BTW)沙堆模型、一维(1D)分数布朗运动(FBM)和 1D Levy 漫步,后两种情况分别由 Hurst 指数 H 和步指数 α 控制。特别是,对于 BTW 模型和 H≲0.5 的 FBM,η大于 2,并且 BTW 模型的 δ<γ+1/2,而 Levy 过程仍然符合 Barthelemy 的猜想。我们断言 Barthelemy 猜想的失败是由于标度 b-k 关系的大波动导致超标度关系 η=γ-1/δ-1 的破坏以及 BTW 模型和 FBM 的突发异常行为。我们发现这些模型具有相同的标度行为,即 Barabasi-Albert 网络,具有广义度的通用分布函数。