Suppr超能文献

模拟磷酸化对 FUS 低复杂度结构域液-液相分离的影响。

Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain.

机构信息

MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China.

Department of Physics, University of Science and Technology of China, Hefei, Anhui, P.R. China.

出版信息

Biophys J. 2023 Jul 11;122(13):2636-2645. doi: 10.1016/j.bpj.2023.05.018. Epub 2023 May 21.

Abstract

Aggregation of the RNA-binding protein fused in sarcoma (FUS) is a hallmark of neurodegenerative diseases. Phosphorylation of Ser/Thr in the FUS low-complexity domain (FUS-LC) may regulate phase separation of FUS and prevent pathological aggregation in cells. However, many details of this process remain elusive to date. In this work, we systematically investigated the phosphorylation of FUS-LC and the underlying molecular mechanism by molecular dynamics (MD) simulations and free energy calculations. The results clearly show that phosphorylation can destroy the fibril core structure of FUS-LC by breaking interchain interactions, particularly contacts involving residues like Tyr, Ser, and Gln. Among the six phosphorylation sites, Ser61 and Ser84 may have more important effects on the stability of the fibril core. Our study reveals structural and dynamic details of FUS-LC phase separation modulated by phosphorylation.

摘要

融合于肉瘤的 RNA 结合蛋白(FUS)的聚集是神经退行性疾病的一个标志。FUS 低复杂度结构域(FUS-LC)中的丝氨酸/苏氨酸的磷酸化可能调节 FUS 的相分离并防止细胞中的病理性聚集。然而,到目前为止,这一过程的许多细节仍然难以捉摸。在这项工作中,我们通过分子动力学(MD)模拟和自由能计算系统地研究了 FUS-LC 的磷酸化及其潜在的分子机制。结果清楚地表明,磷酸化可以通过破坏链间相互作用,特别是涉及酪氨酸、丝氨酸和谷氨酰胺等残基的相互作用,破坏 FUS-LC 的原纤维核心结构。在六个磷酸化位点中,丝氨酸 61 和丝氨酸 84 可能对原纤维核心的稳定性有更重要的影响。我们的研究揭示了磷酸化调节的 FUS-LC 相分离的结构和动力学细节。

相似文献

1
Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain.
Biophys J. 2023 Jul 11;122(13):2636-2645. doi: 10.1016/j.bpj.2023.05.018. Epub 2023 May 21.
2
Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation.
J Mol Biol. 2020 Jan 17;432(2):467-483. doi: 10.1016/j.jmb.2019.11.017. Epub 2019 Dec 2.
5
Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.
Cell. 2017 Oct 19;171(3):615-627.e16. doi: 10.1016/j.cell.2017.08.048. Epub 2017 Sep 21.
6
Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain.
Biopolymers. 2024 Mar;115(2):e23558. doi: 10.1002/bip.23558. Epub 2023 Jul 3.
8
Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants.
J Phys Chem Lett. 2021 Sep 23;12(37):9026-9032. doi: 10.1021/acs.jpclett.1c02310. Epub 2021 Sep 13.
9
Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity.
EMBO J. 2017 Oct 16;36(20):2951-2967. doi: 10.15252/embj.201696394. Epub 2017 Aug 8.
10
The role of ATP in solubilizing RNA-binding protein fused in sarcoma.
Proteins. 2022 Aug;90(8):1606-1612. doi: 10.1002/prot.26335. Epub 2022 Mar 23.

本文引用的文献

1
The physics of liquid-to-solid transitions in multi-domain protein condensates.
Biophys J. 2022 Jul 19;121(14):2751-2766. doi: 10.1016/j.bpj.2022.06.013. Epub 2022 Jun 14.
2
A predictive coarse-grained model for position-specific effects of post-translational modifications.
Biophys J. 2021 Apr 6;120(7):1187-1197. doi: 10.1016/j.bpj.2021.01.034. Epub 2021 Feb 12.
3
Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
J Phys Chem B. 2020 Dec 24;124(51):11671-11679. doi: 10.1021/acs.jpcb.0c10489. Epub 2020 Dec 10.
4
Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation.
J Mol Biol. 2020 Jan 17;432(2):467-483. doi: 10.1016/j.jmb.2019.11.017. Epub 2019 Dec 2.
5
Molecular structure in biomolecular condensates.
Curr Opin Struct Biol. 2020 Feb;60:17-26. doi: 10.1016/j.sbi.2019.09.007. Epub 2019 Nov 29.
6
Low-complexity domain of U1-70K modulates phase separation and aggregation through distinctive basic-acidic motifs.
Sci Adv. 2019 Nov 6;5(11):eaax5349. doi: 10.1126/sciadv.aax5349. eCollection 2019 Nov.
7
TDP-43 and FUS-structural insights into RNA recognition and self-association.
Curr Opin Struct Biol. 2019 Dec;59:134-142. doi: 10.1016/j.sbi.2019.07.012. Epub 2019 Aug 31.
8
Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain.
Nat Struct Mol Biol. 2019 Jul;26(7):637-648. doi: 10.1038/s41594-019-0250-x. Epub 2019 Jul 1.
9
Liquid-Liquid Phase Separation Is Driven by Large-Scale Conformational Unwinding and Fluctuations of Intrinsically Disordered Protein Molecules.
J Phys Chem Lett. 2019 Jul 18;10(14):3929-3936. doi: 10.1021/acs.jpclett.9b01731. Epub 2019 Jul 1.
10
General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
J Chem Theory Comput. 2019 Apr 9;15(4):2620-2634. doi: 10.1021/acs.jctc.8b01123. Epub 2019 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验