Suppr超能文献

拓扑狄拉克半金属CdAs纳米线的窄带、角度可调、与螺旋度相关的太赫兹发射

Narrowband, Angle-Tunable, Helicity-Dependent Terahertz Emission from Nanowires of the Topological Dirac Semimetal CdAs.

作者信息

Boland Jessica L, Damry Djamshid A, Xia Chelsea Q, Schönherr Piet, Prabhakaran Dharmalingam, Herz Laura M, Hesjedal Thorsten, Johnston Michael B

机构信息

Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, U.K.

Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.

出版信息

ACS Photonics. 2023 Apr 3;10(5):1473-1484. doi: 10.1021/acsphotonics.3c00068. eCollection 2023 May 17.

Abstract

All-optical control of terahertz pulses is essential for the development of optoelectronic devices for next-generation quantum technologies. Despite substantial research in THz generation methods, polarization control remains difficult. Here, we demonstrate that by exploiting band structure topology, both helicity-dependent and helicity-independent THz emission can be generated from nanowires of the topological Dirac semimetal CdAs. We show that narrowband THz pulses can be generated at oblique incidence by driving the system with optical (1.55 eV) pulses with circular polarization. Varying the incident angle also provides control of the peak emission frequency, with peak frequencies spanning 0.21-1.40 THz as the angle is tuned from 15 to 45°. We therefore present CdAs nanowires as a promising novel material platform for controllable terahertz emission.

摘要

太赫兹脉冲的全光控制对于下一代量子技术的光电器件发展至关重要。尽管在太赫兹产生方法方面进行了大量研究,但偏振控制仍然困难。在此,我们证明通过利用能带结构拓扑,拓扑狄拉克半金属CdAs的纳米线可以产生与螺旋度相关和与螺旋度无关的太赫兹发射。我们表明,通过用圆偏振的光学(1.55 eV)脉冲驱动系统,可以在斜入射时产生窄带太赫兹脉冲。改变入射角还可以控制峰值发射频率,当角度从15°调至45°时,峰值频率范围为0.21 - 1.40太赫兹。因此,我们提出CdAs纳米线是一种有前途的用于可控太赫兹发射的新型材料平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d529/10197169/a9d8c077adb7/ph3c00068_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验