Suppr超能文献

皮质中间神经元:适合功能还是适合运作?来自发育和进化的证据。

Cortical interneurons: fit for function and fit to function? Evidence from development and evolution.

机构信息

Modelling of Cognitive Processes, Technical University of Berlin, Berlin, Germany.

Einstein Center for Neurosciences, Charité University Medicine Berlin, Berlin, Germany.

出版信息

Front Neural Circuits. 2023 May 4;17:1172464. doi: 10.3389/fncir.2023.1172464. eCollection 2023.

Abstract

Cortical inhibitory interneurons form a broad spectrum of subtypes. This diversity suggests a division of labor, in which each cell type supports a distinct function. In the present era of optimisation-based algorithms, it is tempting to speculate that these functions were the evolutionary or developmental driving force for the spectrum of interneurons we see in the mature mammalian brain. In this study, we evaluated this hypothesis using the two most common interneuron types, parvalbumin (PV) and somatostatin (SST) expressing cells, as examples. PV and SST interneurons control the activity in the cell bodies and the apical dendrites of excitatory pyramidal cells, respectively, due to a combination of anatomical and synaptic properties. But was this compartment-specific inhibition indeed the function for which PV and SST cells originally evolved? Does the compartmental structure of pyramidal cells shape the diversification of PV and SST interneurons over development? To address these questions, we reviewed and reanalyzed publicly available data on the development and evolution of PV and SST interneurons on one hand, and pyramidal cell morphology on the other. These data speak against the idea that the compartment structure of pyramidal cells drove the diversification into PV and SST interneurons. In particular, pyramidal cells mature late, while interneurons are likely committed to a particular fate (PV vs. SST) during early development. Moreover, comparative anatomy and single cell RNA-sequencing data indicate that PV and SST cells, but not the compartment structure of pyramidal cells, existed in the last common ancestor of mammals and reptiles. Specifically, turtle and songbird SST cells also express the and genes that are thought to play a role in compartment-specific inhibition in mammals. PV and SST cells therefore evolved and developed the properties that allow them to provide compartment-specific inhibition before there was selective pressure for this function. This suggest that interneuron diversity originally resulted from a different evolutionary driving force and was only later co-opted for the compartment-specific inhibition it seems to serve in mammals today. Future experiments could further test this idea using our computational reconstruction of ancestral Elfn1 protein sequences.

摘要

皮质抑制性中间神经元形成广泛的亚型。这种多样性表明存在分工,其中每种细胞类型支持独特的功能。在当前基于优化算法的时代,人们不禁推测,这些功能是我们在成熟哺乳动物大脑中看到的中间神经元谱系的进化或发育驱动力。在这项研究中,我们使用最常见的两种中间神经元类型,即 parvalbumin(PV)和 somatostatin(SST)表达细胞作为示例来评估这一假设。PV 和 SST 中间神经元分别通过解剖和突触特性的结合来控制兴奋性锥体细胞的胞体和树突的活性。但是,这种细胞区室特异性抑制真的是 PV 和 SST 细胞最初进化的功能吗?锥体细胞的区室结构是否会影响 PV 和 SST 中间神经元在发育过程中的多样化?为了解决这些问题,我们一方面回顾和重新分析了关于 PV 和 SST 中间神经元发育和进化的公开可用数据,另一方面也分析了锥体细胞形态的相关数据。这些数据表明,锥体细胞的区室结构并不是推动 PV 和 SST 中间神经元多样化的原因。特别是,锥体细胞成熟较晚,而中间神经元在早期发育过程中就可能决定了特定的命运(PV 还是 SST)。此外,比较解剖学和单细胞 RNA 测序数据表明,PV 和 SST 细胞存在于哺乳动物和爬行动物的最后共同祖先中,而不是锥体细胞的区室结构。具体来说,龟和鸣禽的 SST 细胞也表达 和 基因,这些基因被认为在哺乳动物中发挥着区室特异性抑制的作用。因此,PV 和 SST 细胞在出现这种功能的选择性压力之前就已经进化并发展出了提供区室特异性抑制的特性。这表明中间神经元的多样性最初是由不同的进化驱动力产生的,后来才被用于哺乳动物今天似乎发挥的区室特异性抑制作用。未来的实验可以使用我们对祖先 Elfn1 蛋白序列的计算重建来进一步检验这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29b2/10192557/ddeee76715c7/fncir-17-1172464-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验