Suppr超能文献

人工智能与临床决策支持:临床医生对信任、可信度和责任的看法。

Artificial intelligence and clinical decision support: clinicians' perspectives on trust, trustworthiness, and liability.

机构信息

Hillary Rodham Clinton School of Law, Swansea University, Swansea, UK.

Nottingham Law School, Nottingham Trent University, Nottingham, UK.

出版信息

Med Law Rev. 2023 Nov 27;31(4):501-520. doi: 10.1093/medlaw/fwad013.

Abstract

Artificial intelligence (AI) could revolutionise health care, potentially improving clinician decision making and patient safety, and reducing the impact of workforce shortages. However, policymakers and regulators have concerns over whether AI and clinical decision support systems (CDSSs) are trusted by stakeholders, and indeed whether they are worthy of trust. Yet, what is meant by trust and trustworthiness is often implicit, and it may not be clear who or what is being trusted. We address these lacunae, focusing largely on the perspective(s) of clinicians on trust and trustworthiness in AI and CDSSs. Empirical studies suggest that clinicians' concerns about their use include the accuracy of advice given and potential legal liability if harm to a patient occurs. Onora O'Neill's conceptualisation of trust and trustworthiness provides the framework for our analysis, generating a productive understanding of clinicians' reported trust issues. Through unpacking these concepts, we gain greater clarity over the meaning ascribed to them by stakeholders; delimit the extent to which stakeholders are talking at cross purposes; and promote the continued utility of trust and trustworthiness as useful concepts in current debates around the use of AI and CDSSs.

摘要

人工智能(AI)可能会彻底改变医疗保健行业,有望改善临床医生的决策和患者安全,并减轻劳动力短缺的影响。然而,政策制定者和监管机构对 AI 和临床决策支持系统(CDSS)是否能得到利益相关者的信任,以及它们是否值得信任表示担忧。然而,信任和值得信任的含义往往是隐含的,而且可能不清楚是谁或什么值得信任。我们主要关注临床医生对 AI 和 CDSS 的信任和值得信任的观点,以此来解决这些空白。实证研究表明,临床医生对其使用的担忧包括所提供建议的准确性,如果患者受到伤害,他们可能会承担潜在的法律责任。奥诺拉·奥尼尔(Onora O'Neill)对信任和值得信任的概念化提供了我们分析的框架,为临床医生报告的信任问题提供了富有成效的理解。通过对这些概念进行剖析,我们可以更清楚地了解利益相关者赋予它们的含义;限制利益相关者在多大程度上各执一词;并促进信任和值得信任作为当前关于 AI 和 CDSS 使用的争论中的有用概念的持续效用。

相似文献

7
Toward a responsible future: recommendations for AI-enabled clinical decision support.
J Am Med Inform Assoc. 2024 Nov 1;31(11):2730-2739. doi: 10.1093/jamia/ocae209.
8
Limits of trust in medical AI.
J Med Ethics. 2020 Jul;46(7):478-481. doi: 10.1136/medethics-2019-105935. Epub 2020 Mar 27.
9
Artificial Intelligence and Human Trust in Healthcare: Focus on Clinicians.
J Med Internet Res. 2020 Jun 19;22(6):e15154. doi: 10.2196/15154.

引用本文的文献

1
Quo Vadis, AI-Empowered Doctor?
JMIR Med Educ. 2025 Aug 15;11:e70079. doi: 10.2196/70079.
5
A Model Predicting Artificial Intelligence Use by Gastroenterology Nurses in Clinical Practice: A Cross-Sectional Multicenter Survey.
J Gastroenterol Hepatol. 2025 Sep;40(9):2275-2281. doi: 10.1111/jgh.17042. Epub 2025 Jul 3.
6
Artificial Intelligence in Endoscopic and Ultrasound Imaging for Inflammatory Bowel Disease.
J Clin Med. 2025 Jun 16;14(12):4291. doi: 10.3390/jcm14124291.
7
Leveraging artificial intelligence to combat antimicrobial resistance in geriatric care.
Digit Health. 2025 May 29;11:20552076251346612. doi: 10.1177/20552076251346612. eCollection 2025 Jan-Dec.
9
Challenges for implementing generative artificial intelligence (GenAI) into clinical healthcare.
Intern Med J. 2025 Jul;55(7):1063-1069. doi: 10.1111/imj.70035. Epub 2025 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验